dc.identifier.citation |
[1] D. Crosby et al., “Early detection of cancer,” Science (1979), vol. 375, no. 6586, Mar. 2022, doi: 10.1126/science.aay9040. [2] Y. Zhou, Z. Ma, and Y. Ai, “Sheathless inertial cell focusing and sorting with serial reverse wavy channel structures,” Microsyst Nanoeng, vol. 4, no. 1, 2018, doi: 10.1038/S41378-018-0005-6. [3] J. M. Martel and M. Toner, “Inertial focusing in microfluidics,” Annu Rev Biomed Eng, vol. 16, pp. 371–396, 2014, doi: 10.1146/annurev-bioeng-121813-120704. [4] L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, “Continuous Particle Separation Through Deterministic Lateral Displacement,” Science (1979), vol. 304, no. 5673, pp. 987–990, May 2004, doi: 10.1126/science.1094567. [5] K. J. Morton et al., “Hydrodynamic metamaterials: Microfabricated arrays to steer, refract, and focus streams of biomaterials,” 2008. [Online]. Available: www.pnas.org/cgi/content/full/ [6] P. De Stefano, E. Bianchi, and G. Dubini, “The impact of microfluidics in high throughput drug-screening applications,” May 01, 2022, American Institute of Physics Inc. doi: 10.1063/5.0087294. [7] N. Xiang and Z. Ni, “Inertial Microfluidics for Single-Cell Manipulation and Analysis,” in Handbook of Single Cell Technologies, Singapore: Springer Singapore, 2020, pp. 1–30. doi: 10.1007/978-981-10-4857-9_29-1. [8] C. F. Rodríguez et al., “Low-cost inertial microfluidic device for microparticle separation: A laser-Ablated PMMA lab-on-a-chip approach without a cleanroom,” HardwareX, vol. 16, p. e00493, Dec. 2023, doi: 10.1016/j.ohx.2023.e00493. 51 [9] W. Tang, S. Zhu, D. Jiang, L. Zhu, J. Yang, and N. Xiang, “Channel innovations for inertial microfluidics,” Lab Chip, vol. 20, no. 19, pp. 3485–3502, Oct. 2020, doi: 10.1039/d0lc00714e. [10] J.-P. MATAS, J. F. MORRIS, and É. GUAZZELLI, “Inertial migration of rigid spherical particles in Poiseuille flow,” J Fluid Mech, vol. 515, pp. 171–195, Sep. 2004, doi: 10.1017/S0022112004000254. [11] J. A. Schonberg and E. J. Hinch, “Inertial migration of a sphere in Poiseuille flow,” J Fluid Mech, vol. 203, pp. 517–524, Jun. 1989, doi: 10.1017/S0022112089001564. [12] E. S. ASMOLOV, “The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number,” J Fluid Mech, vol. 381, pp. 63–87, Feb. 1999, doi: 10.1017/S0022112098003474. [13] B. P. Ho and L. G. Leal, “Inertial migration of rigid spheres in two-dimensional unidirectional flows,” J Fluid Mech, vol. 65, no. 2, pp. 365–400, Aug. 1974, doi: 10.1017/S0022112074001431. [14] R. G. Cox and H. Brenner, “The lateral migration of solid particles in Poiseuille flow — I theory,” Chem Eng Sci, vol. 23, no. 2, pp. 147–173, May 1968, doi: 10.1016/0009-2509(68)87059-9. [15] A. J. Chung, “A Minireview on Inertial Microfluidics Fundamentals: Inertial Particle Focusing and Secondary Flow,” Biochip J, vol. 13, no. 1, pp. 53–63, Mar. 2019, doi: 10.1007/s13206-019-3110-1. [16] Y. Gou, Y. Jia, P. Wang, and C. Sun, “Progress of Inertial Microfluidics in Principle and Application,” Sensors, vol. 18, no. 6, p. 1762, Jun. 2018, doi: 10.3390/s18061762. [17] G. SEGRÉ and A. SILBERBERG, “Radial Particle Displacements in Poiseuille Flow of Suspensions,” Nature, vol. 189, no. 4760, pp. 209–210, Jan. 1961, doi: 10.1038/189209a0. 52 [18] D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, and M. Toner, “Particle Segregation and Dynamics in Confined Flows,” Phys Rev Lett, vol. 102, no. 9, p. 094503, Mar. 2009, doi: 10.1103/PhysRevLett.102.094503. [19] J.-P. MATAS, J. F. MORRIS, and É. GUAZZELLI, “Lateral force on a rigid sphere in large-inertia laminar pipe flow,” J Fluid Mech, vol. 621, pp. 59–67, Feb. 2009, doi: 10.1017/S0022112008004977. [20] Y. Gou, Y. Jia, P. Wang, and C. Sun, “Progress of inertial microfluidics in principle and application,” Jun. 01, 2018, MDPI AG. doi: 10.3390/s18061762. [21] D. Di Carlo, “Inertial microfluidics,” 2009, Royal Society of Chemistry. doi: 10.1039/b912547g. [22] Y. Zhou, Z. Ma, and Y. Ai, “Sheathless inertial cell focusing and sorting with serial reverse wavy channel structures,” Microsyst Nanoeng, vol. 4, no. 1, 2018, doi: 10.1038/S41378-018-0005-6. [23] Y. Ying and Y. Lin, “Inertial Focusing and Separation of Particles in Similar Curved Channels,” Sci Rep, vol. 9, no. 1, Dec. 2019, doi: 10.1038/s41598-019-52983-z. [24] J. Zhu, T. J. Tzeng, and X. Xuan, “Continuous dielectrophoretic separation of particles in a spiral microchannel,” Electrophoresis, vol. 31, no. 8, pp. 1382–1388, Apr. 2010, doi: 10.1002/elps.200900736. [25] J. G. Kralj, M. T. W. Lis, M. A. Schmidt, and K. F. Jensen, “Continuous Dielectrophoretic Size-Based Particle Sorting,” Anal Chem, vol. 78, no. 14, pp. 5019–5025, Jul. 2006, doi: 10.1021/ac0601314. [26] J. Voldman, “ELECTRICAL FORCES FOR MICROSCALE CELL MANIPULATION,” Annu Rev Biomed Eng, vol. 8, no. 1, pp. 425–454, Aug. 2006, doi: 10.1146/annurev.bioeng.8.061505.095739. 53 [27] D. R. Gossett et al., “Label-free cell separation and sorting in microfluidic systems,” Anal Bioanal Chem, vol. 397, no. 8, pp. 3249–3267, Aug. 2010, doi: 10.1007/s00216-010-3721-9. [28] N. Pamme, “Continuous flow separations in microfluidic devices,” Lab Chip, vol. 7, no. 12, p. 1644, 2007, doi: 10.1039/b712784g. [29] K. Loutherback, K. S. Chou, J. Newman, J. Puchalla, R. H. Austin, and J. C. Sturm, “Improved performance of deterministic lateral displacement arrays with triangular posts,” Microfluid Nanofluidics, vol. 9, no. 6, pp. 1143–1149, Dec. 2010, doi: 10.1007/s10404-010-0635-y. [30] J. M. Martel and M. Toner, “Inertial focusing in microfluidics,” 2014, Annual Reviews Inc. doi: 10.1146/annurev-bioeng-121813-120704. [31] H. Amini, W. Lee, and D. Di Carlo, “Inertial microfluidic physics,” Aug. 07, 2014, Royal Society of Chemistry. doi: 10.1039/c4lc00128a. [32] N. Nivedita and I. Papautsky, “Continuous separation of blood cells in spiral microfluidic devices,” Biomicrofluidics, vol. 7, no. 5, Sep. 2013, doi: 10.1063/1.4819275. [33] L. Wu, G. Guan, H. W. Hou, A. Asgar. S. Bhagat, and J. Han, “Separation of Leukocytes from Blood Using Spiral Channel with Trapezoid Cross-Section,” Anal Chem, vol. 84, no. 21, pp. 9324–9331, Nov. 2012, doi: 10.1021/ac302085y. [34] S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar, and I. Papautsky, “Inertial microfluidics for continuous particle separation in spiral microchannels,” Lab Chip, vol. 9, no. 20, p. 2973, 2009, doi: 10.1039/b908271a. [35] A. A. S. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, “Enhanced particle filtration in straight microchannels using shear-modulated inertial migration,” Physics of Fluids, vol. 20, no. 10, Oct. 2008, doi: 10.1063/1.2998844. 54 [36] B. Chun and A. J. C. Ladd, “Inertial migration of neutrally buoyant particles in a square duct: An investigation of multiple equilibrium positions,” Physics of Fluids, vol. 18, no. 3, Mar. 2006, doi: 10.1063/1.2176587. [37] D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proceedings of the National Academy of Sciences, vol. 104, no. 48, pp. 18892–18897, Nov. 2007, doi: 10.1073/pnas.0704958104. [38] D. R. Gossett and D. Di Carlo, “Particle Focusing Mechanisms in Curving Confined Flows,” Anal Chem, vol. 81, no. 20, pp. 8459–8465, Oct. 2009, doi: 10.1021/ac901306y. [39] D. Di Carlo, J. F. Edd, D. Irimia, R. G. Tompkins, and M. Toner, “Equilibrium Separation and Filtration of Particles Using Differential Inertial Focusing,” Anal Chem, vol. 80, no. 6, pp. 2204–2211, Mar. 2008, doi: 10.1021/ac702283m. [40] X. Mao, I. Bischofberger, and A. E. Hosoi, “Particle focusing in a wavy channel,” J Fluid Mech, vol. 968, Aug. 2023, doi: 10.1017/jfm.2023.558. [41] J.-P. MATAS, J. F. MORRIS, and É. GUAZZELLI, “Inertial migration of rigid spherical particles in Poiseuille flow,” J Fluid Mech, vol. 515, pp. 171–195, Sep. 2004, doi: 10.1017/S0022112004000254. [42] D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels,” Proceedings of the National Academy of Sciences, vol. 104, no. 48, pp. 18892–18897, Nov. 2007, doi: 10.1073/pnas.0704958104. [43] J. Zhou and I. Papautsky, “Fundamentals of inertial focusing in microchannels,” Lab Chip, vol. 13, no. 6, pp. 1121–1132, Mar. 2013, doi: 10.1039/c2lc41248a. 55 [44] D. Jiang, C. Ni, W. Tang, D. Huang, and N. Xiang, “Inertial microfluidics in contraction-expansion microchannels: A review,” Jul. 01, 2021, American Institute of Physics Inc. doi: 10.1063/5.0058732. [45] T. S. Sim, K. Kwon, J. C. Park, J.-G. Lee, and H.-I. Jung, “Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels,” Lab Chip, vol. 11, no. 1, pp. 93–99, 2011, doi: 10.1039/C0LC00109K. [46] A. Al-Ali, W. Waheed, E. Abu-Nada, and A. Alazzam, “A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles,” J Chromatogr A, vol. 1676, p. 463268, Aug. 2022, doi: 10.1016/j.chroma.2022.463268. [47] S. Yan, J. Zhang, D. Yuan, and W. Li, “Hybrid microfluidics combined with active and passive approaches for continuous cell separation,” Electrophoresis, vol. 38, no. 2, pp. 238–249, Jan. 2017, doi: 10.1002/elps.201600386. [48] M. S. Islam and X. Chen, “Continuous CTC separation through a DEP-based contraction–expansion inertial microfluidic channel,” Biotechnol Prog, vol. 39, no. 4, Jul. 2023, doi: 10.1002/btpr.3341 |
en_US |