dc.identifier.citation |
[1] C. Di Primo, “Surface Plasmon Resonance for Investigating Molecular Interactions with RNA,” 2020, pp. 73–88. doi: 10.1007/978-1-0716-0278-2_6. [2] M. R. Islam et al., “Surface plasmon resonance based highly sensitive gold coated PCF biosensor,” Applied Physics A, vol. 127, no. 2, p. 118, Feb. 2021, doi: 10.1007/s00339-020- 04162-5. [3] M. R. Islam et al., “Highly birefringent gold-coated SPR sensor with extremely enhanced amplitude and wavelength sensitivity,” The European Physical Journal Plus, vol. 136, no. 2, p. 238, Feb. 2021, doi: 10.1140/epjp/s13360-021-01220-6. [4] M. R. Islam et al., “Design and Analysis of a Biochemical Sensor Based on Surface Plasmon Resonance with Ultra-high Sensitivity,” Plasmonics, vol. 16, no. 3, pp. 849–861, Jun. 2021, doi: 10.1007/s11468-020-01355-9. [5] M. R. Islam et al., “Design and analysis of a QC-SPR-PCF sensor for multipurpose sensing with supremely high FOM,” Appl Nanosci, vol. 12, no. 1, pp. 29–45, Jan. 2022, doi: 10.1007/s13204-021-02150-6. [6] D. J. J. Hu and H. P. Ho, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv Opt Photonics, vol. 9, no. 2, p. 257, Jun. 2017, doi: 10.1364/AOP.9.000257. [7] Md. A. Islam, M. R. Islam, A. M. Al Naser, F. Anzum, and F. Z. Jaba, “Square structured photonic crystal fiber based THz sensor design for human body protein detection,” J Comput Electron, vol. 20, no. 1, pp. 377–386, Feb. 2021, doi: 10.1007/s10825-020-01606-2. [8] M. R. Islam, A. N. M. Iftekher, F. A. Mou, Md. M. Rahman, and M. I. H. Bhuiyan, “Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection,” Applied Physics A, vol. 127, no. 2, p. 109, Feb. 2021, doi: 10.1007/s00339-020-04261-3. [9] Md. A. Islam, M. R. Islam, S. Siraz, M. Rahman, M. S. Anzum, and F. Noor, “Wheel structured Zeonex-based photonic crystal fiber sensor in THz regime for sensing milk,” Applied Physics A, vol. 127, no. 5, p. 311, May 2021, doi: 10.1007/s00339-021-04472-2. [10] M. R. H. Khan, F. A. M. Ali, and M. R. Islam, “THz sensing of CoViD-19 disinfecting products using photonic crystal fiber,” Sens Biosensing Res, vol. 33, p. 100447, Aug. 2021, doi: 10.1016/j.sbsr.2021.100447. [11] Md. M. Rahman, F. A. Mou, M. I. H. Bhuiyan, and M. R. Islam, “Refractometric THz Sensing of Blood Components in a Photonic Crystal Fiber Platform,” Brazilian Journal of Physics, vol. 52, no. 2, p. 47, Apr. 2022, doi: 10.1007/s13538-022-01054-2. 92 [12] C. M. B. Cordeiro et al., “Microstructured-core optical fibre for evanescent sensing applications,” Opt Express, vol. 14, no. 26, p. 13056, 2006, doi: 10.1364/OE.14.013056. [13] T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas Sci Technol, vol. 12, no. 7, pp. 854–858, Jul. 2001, doi: 10.1088/0957-0233/12/7/318. [14] Md. A. Islam, M. R. Islam, Z. Tasnim, R. Islam, R. L. Khan, and E. Moazzam, “Low-Loss and Dispersion-Flattened Octagonal Porous Core PCF for Terahertz Transmission Applications,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 44, no. 4, pp. 1583–1592, Dec. 2020, doi: 10.1007/s40998-020-00337-1. [15] M. R. Islam, A. N. M. Iftekher, F. Noor, M. R. H. Khan, Md. T. Reza, and M. M. Nishat, “AZO-coated plasmonic PCF nanosensor for blood constituent detection in near-infrared and visible spectrum,” Applied Physics A, vol. 128, no. 1, p. 86, Jan. 2022, doi: 10.1007/s00339- 021-05220-2. [16] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, Aug. 2003, doi: 10.1038/nature01937. [17] D. Paul and R. Biswas, “Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain,” Opt Laser Technol, vol. 101, pp. 379–387, May 2018, doi: 10.1016/j.optlastec.2017.11.040. [18] C. Zhou, “Localized surface plasmonic resonance study of silver nanocubes for photonic crystal fiber sensor,” Opt Lasers Eng, vol. 50, no. 11, pp. 1592–1595, Nov. 2012, doi: 10.1016/j.optlaseng.2012.05.020. [19] Md. A. Mollah and Md. S. Islam, “Novel Single Hole Exposed-Suspended Core Localized Surface Plasmon Resonance Sensor,” IEEE Sens J, pp. 1–1, 2020, doi: 10.1109/JSEN.2020.3023975. [20] M. S. Aruna Gandhi, K. Senthilnathan, P. Ramesh Babu, and Q. Li, “Highly Sensitive Localized Surface Plasmon Polariton Based D-Type Twin-Hole Photonic Crystal Fiber Microbiosensor: Enhanced Scheme for SERS Reinforcement,” Sensors, vol. 20, no. 18, p. 5248, Sep. 2020, doi: 10.3390/s20185248. [21] J. Wu, S. Li, X. Wang, M. Shi, X. Feng, and Y. Liu, “Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance,” Appl Opt, vol. 57, no. 15, p. 4002, May 2018, doi: 10.1364/AO.57.004002. [22] T. Li, L. Zhu, X. Yang, X. Lou, and L. Yu, “A Refractive Index Sensor Based on H-Shaped Photonic Crystal Fibers Coated with Ag-Graphene Layers,” Sensors, vol. 20, no. 3, p. 741, Jan. 2020, doi: 10.3390/s20030741. 93 [23] S. M. Abu Sufian Sunny, T. Ahmed, A. Anzum, and A. K. Paul, “Performance Analysis of a PCF SPR Based Highly Sensitive Biosensor,” in 2019 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health (BECITHCON), IEEE, Nov. 2019, pp. 7–10. doi: 10.1109/BECITHCON48839.2019.9063192. [24] Md. N. Hossen, Md. Ferdous, Md. Abdul Khalek, S. Chakma, B. K. Paul, and K. Ahmed, “Design and analysis of biosensor based on surface plasmon resonance,” Sens Biosensing Res, vol. 21, pp. 1–6, Nov. 2018, doi: 10.1016/j.sbsr.2018.08.003. [25] Md. R. Hasan et al., “Spiral Photonic Crystal Fiber-Based Dual-Polarized Surface Plasmon Resonance Biosensor,” IEEE Sens J, vol. 18, no. 1, pp. 133–140, Jan. 2018, doi: 10.1109/JSEN.2017.2769720. [26] J. Lv et al., “Numerical Analysis of Multifunctional Biosensor with Dual-Channel Photonic Crystal Fibers Based on Localized Surface Plasmon Resonance,” Coatings, vol. 12, no. 6, p. 742, May 2022, doi: 10.3390/coatings12060742. [27] G. Xiao et al., “Fiber Optic Sensor with a Gold Nanowire Group Array for Broad Range and Low Refractive Index Detection,” Photonics, vol. 9, no. 9, p. 661, Sep. 2022, doi: 10.3390/photonics9090661. [28] A. K. Shakya and S. Singh, “Design and analysis of dual polarized Au and TiO2-coated photonic crystal fiber surface plasmon resonance refractive index sensor: an extraneous sensing approach,” J Nanophotonics, vol. 15, no. 01, Feb. 2021, doi: 10.1117/1.JNP.15.016009. [29] A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. M. Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt Express, vol. 24, no. 3, p. 2485, Feb. 2016, doi: 10.1364/OE.24.002485. [30] H. Yang, G. Wang, Y. Lu, and J. Yao, “Highly sensitive refractive index sensor based on SPR with silver and titanium dioxide coating,” Opt Quantum Electron, vol. 53, no. 6, p. 341, Jun. 2021, doi: 10.1007/s11082-021-02981-1. [31] S. Singh and Y. K. Prajapati, “TiO2/gold-graphene hybrid solid core SPR based PCF RI sensor for sensitivity enhancement,” Optik (Stuttg), vol. 224, p. 165525, Dec. 2020, doi: 10.1016/j.ijleo.2020.165525. [32] M. Rakibul Islam, A. N. M. Iftekher, M. S. Anzum, M. Rahman, and S. Siraz, “LSPR Based Double Peak Double Plasmonic Layered Bent Core PCF-SPR Sensor for Ultra-Broadband Dual Peak Sensing,” IEEE Sens J, vol. 22, no. 6, pp. 5628–5635, Mar. 2022, doi: 10.1109/JSEN.2022.3149715. [33] M. R. Islam, A. N. M. Iftekhar, A. A. Hassan, S. Zaman, and M. A. Al Hosain, “Double plasmonic peak shift sensitivity: an analysis of a highly sensitive LSPR-PCF sensor for a 94 diverse range of analyte detection,” Applied Physics A, vol. 129, no. 8, p. 571, Aug. 2023, doi: 10.1007/s00339-023-06851-3. [34] M. R. Islam, A. N. M. Iftekher, M. F. Etu, W. R. Rashmi, and S. Abbas, “Dual Peak Double Resonance Sensing Using a Dual Plasmonic Material PCF-SPR Sensor,” Plasmonics, vol. 18, no. 3, pp. 983–993, Jun. 2023, doi: 10.1007/s11468-023-01829-6. [35] M. R. Islam, A. N. M. Iftekher, I. Marshad, N. F. Rity, and R. U. Ahmad, “Analysis of a dual peak dual plasmonic layered LSPR-PCF sensor – Double peak shift sensitivity approach,” Optik (Stuttg), vol. 280, p. 170793, Jun. 2023, doi: 10.1016/j.ijleo.2023.170793. [36] G. V. Naik and A. Boltasseva, “Semiconductors for plasmonics and metamaterials,” physica status solidi (RRL) - Rapid Research Letters, vol. 4, no. 10, pp. 295–297, Oct. 2010, doi: 10.1002/pssr.201004269. [37] G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Advanced Materials, vol. 25, no. 24, pp. 3264–3294, Jun. 2013, doi: 10.1002/adma.201205076. [38] C. Liu et al., “Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings,” Opt Commun, vol. 464, p. 125496, Jun. 2020, doi: 10.1016/j.optcom.2020.125496. [39] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon Rev, vol. 4, no. 6, pp. 795–808, Nov. 2010, doi: 10.1002/lpor.200900055. [40] P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys Rev B, vol. 6, no. 12, pp. 4370–4379, Dec. 1972, doi: 10.1103/PhysRevB.6.4370. [41] T. Wieduwilt et al., “Ultrathin niobium nanofilms on fiber optical tapers – a new route towards low-loss hybrid plasmonic modes,” Sci Rep, vol. 5, no. 1, p. 17060, Nov. 2015, doi: 10.1038/srep17060. [42] L. Zhou et al., “Irreversible accumulated SERS behavior of the molecule-linked silver and silver-doped titanium dioxide hybrid system,” Nat Commun, vol. 11, no. 1, p. 1785, Apr. 2020, doi: 10.1038/s41467-020-15484-6. [43] T. Wang et al., “The effect of the TiO2 film on the performance of the optical fiber SPR sensor,” Opt Commun, vol. 448, pp. 93–97, Oct. 2019, doi: 10.1016/j.optcom.2019.05.023. [44] S. Selvendran, J. Divya, A. Sivanantha Raja, A. Sivasubramanian, and S. Itapu, “A Reconfigurable Surface-Plasmon-Based Filter/Sensor Using D-Shaped Photonic Crystal Fiber,” Micromachines (Basel), vol. 13, no. 6, p. 917, Jun. 2022, doi: 10.3390/mi13060917. 95 [45] D. Pysz et al., “Stack and draw fabrication of soft glass microstructured fiber optics,” Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 62, no. 4, pp. 667–682, Dec. 2014, doi: 10.2478/bpasts-2014-0073. [46] S. Choi and J.-K. Park, “Two-step photolithography to fabricate multilevel microchannels,” Biomicrofluidics, vol. 4, no. 4, p. 046503, Dec. 2010, doi: 10.1063/1.3517230. [47] P. J. A. Sazio et al., “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science (1979), vol. 311, no. 5767, pp. 1583–1586, Mar. 2006, doi: 10.1126/science.1124281. [48] M. R. Islam et al., “Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor,” Opt Quantum Electron, vol. 53, no. 2, p. 112, Feb. 2021, doi: 10.1007/s11082-021-02748-8. [49] H. Ahmad et al., “Wide-band fanned-out supercontinuum source covering O-, E-, S-, C-, L and U-bands,” Opt Laser Technol, vol. 44, no. 7, pp. 2168–2174, Oct. 2012, doi: 10.1016/j.optlastec.2012.03.007. [50] B. K. Paul, Md. S. Islam, K. Ahmed, and S. Asaduzzaman, “Alcohol sensing over O+E+S+C+L+U transmission band based on porous cored octagonal photonic crystal fiber,” Photonic Sensors, vol. 7, no. 2, pp. 123–130, Jun. 2017, doi: 10.1007/s13320-017-0376-6. [51] R. Stanley, “Plasmonics in the mid-infrared,” Nat Photonics, vol. 6, no. 7, pp. 409–411, Jul. 2012, doi: 10.1038/nphoton.2012.161. [52] R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat Photonics, vol. 4, no. 8, pp. 495–497, Aug. 2010, doi: 10.1038/nphoton.2010.171. [53] V. Kaur and S. Singh, “Design of D-Shaped PCF-SPR sensor with dual coating of ITO and ZnO conducting metal oxide,” Optik (Stuttg), vol. 220, p. 165135, Oct. 2020, doi: 10.1016/j.ijleo.2020.165135. [54] M. F. O. Hameed, S. S. A. Obayya, K. Al-Begain, A. M. Nasr, and M. I. Abo el Maaty, “Accurate radial basis function based neural network approach for analysis of photonic crystal fibers,” Opt Quantum Electron, vol. 40, no. 11–12, pp. 891–905, Sep. 2008, doi: 10.1007/s11082-009-9290-5. [55] X. Yang, Y. Lu, B. Liu, and J. Yao, “Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance,” Plasmonics, vol. 12, no. 2, pp. 489–496, Apr. 2017, doi: 10.1007/s11468-016-0289-z. [56] J. N. Dash and R. Jha, “On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance,” Plasmonics, vol. 10, no. 5, pp. 1123– 1131, Oct. 2015, doi: 10.1007/s11468-015-9912-7. 96 [57] D. Wang et al., “High-Performance Tapered Fiber Surface Plasmon Resonance Sensor Based on the Graphene/Ag/TiO2 Layer,” Plasmonics, vol. 16, no. 6, pp. 2291–2303, Dec. 2021, doi: 10.1007/s11468-021-01483-w. [58] H. Fang, C. Wei, H. Yang, B. Zhao, L. Yuan, and J. Li, “D-Shaped Photonic Crystal Fiber Plasmonic Sensor Based on Silver-Titanium Dioxide Composite Micro-grating,” Plasmonics, vol. 16, no. 6, pp. 2049–2059, Dec. 2021, doi: 10.1007/s11468-021-01468-9 |
en_US |