Residential Load Forecasting and Dynamic Demand Side Management

Show simple item record

dc.contributor.author Rahman, Md. Saifur
dc.contributor.author Aziz, Md. Sifat
dc.contributor.author Baki, Abdullah Al
dc.date.accessioned 2025-02-28T06:37:08Z
dc.date.available 2025-02-28T06:37:08Z
dc.date.issued 2024-07-25
dc.identifier.citation [1] Bangladesh. (n.d.). World Bank. Retrieved June 11, 2024, from https://www.worldbank.org/en/country/bangladesh#:~:text=Bangladesh%20has%20an%2 0inspiring%20story%20of%20growth%20and,than%20US%2439.5%20billion%20to%20 support%20Bangladesh%E2%80%99s%20development%20journey. [2] হাইড্রাকার্ বন ইউননট, জ্বালানন ও খননজ সম্পদ নর্ভাগ. (n.d.). Www.hcu.org.bd. http://www.hcu.org.bd/ [3] Lampropoulos, I., Kling, W. L., Ribeiro, P. F., & Van Den Berg, J. (2013). History of demand side management and classification of demand response control schemes. IEEE Xplore. https://doi.org/10.1109/pesmg.2013.6672715 [4] Berkowitz, D. G., & Gellings, C. W. (1985). Glossary of terms related to Load Management, parts I and II. IEEE Power Engineering Review, PER-5(9), 35. https://doi.org/10.1109/mper.1985.5526441 [5] Taylor, J. W., & McSharry, P. E. (2007). Short-term load forecasting methods: An evaluation based on European data. IEEE Transactions on Power Systems, 22(4), 2213- 2219. [6] Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications. Springer. [7] Deb, C., & Lee, S. E. (2018). Determining key variables influencing energy consumption in office buildings through cluster analysis of pre-and post-retrofit building data. Energy and Buildings, 159, 228-245. [8] Tao, H., & Fan, S. (2016). Electricity Load Forecasting: Fundamentals and Best Practices. Elsevier. [9] U.S. Energy Information Administration (EIA). (n.d.). Retrieved from https://www.eia.gov. [10] Navigant Research. (2019). Advanced Metering Infrastructure and the Global Smart Meter Market. Retrieved from https://www.navigantresearch.com. [11] International Energy Agency (IEA). (n.d.). Retrieved from https://www.iea.org. [12] Hong, T., & Fan, S. (2016). Probabilistic electric load forecasting: A tutorial review. International Journal of Forecasting, 32(3), 914-938. 80 [13] Ponocko, J., & Milanovic, J. (2019). The Effect of Load-follow-generation Motivated DSM Programme on Losses and Loadability of a Distribution Network with Renewable Generation. 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia). https://doi.org/10.1109/gtdasia.2019.8715988 [14] Xu, Y., & Milanovic, J. V. (2016). Day-Ahead prediction and shaping of dynamic response of demand at bulk supply points. IEEE Transactions on Power Systems, 31(4), 3100–3108. https://doi.org/10.1109/tpwrs.2015.2477559 [15] Ponocko, J., & Milanovic, J. V. (2020). Multi-Objective demand side management at distribution network level in support of transmission network operation. IEEE Transactions on Power Systems, 35(3), 1822–1833. https://doi.org/10.1109/tpwrs.2019.2944747 [16] Hosseini, S. M., Carli, R., & Dotoli, M. (2019). A Residential Demand-Side Management Strategy under Nonlinear Pricing Based on Robust Model Predictive Control. IEEE Xplore. https://doi.org/10.1109/smc.2019.8913892 [17] AboGaleela, M., El-Sobki, M., & El-Marsafawy, M. (2012, July 1). A two level optimal DSM load shifting formulation using genetics algorithm case study: Residential loads. IEEE Xplore. https://doi.org/10.1109/PowerAfrica.2012.6498651 [18] AboGaleela, M., El-Marsafawy, M., & El-Sobki, M. (2013). Optimal Scheme with Load Forecasting for Demand Side Management (DSM) in Residential Areas. Energy and Power Engineering, 05(04), 889–896. https://doi.org/10.4236/epe.2013.54b171 [19] Niharika, N., & Mukherjee, V. (2018). Day‐ahead demand side management using symbiotic organisms search algorithm. IET Generation, Transmission & Distribution, 12(14), 3487–3494. https://doi.org/10.1049/iet-gtd.2018.0106 [20] Logenthiran, T., Srinivasan, D., & Shun, T. Z. (2012). Demand side management in smart grid using heuristic optimization. IEEE Transactions on Smart Grid, 3(3), 1244– 1252. https://doi.org/10.1109/tsg.2012.2195686 [21] Saravanan, B. (2015). DSM in an area consisting of residential, commercial and industrial load in smart grid. Frontiers in Energy, 9(2), 211–216. https://doi.org/10.1007/s11708-015-0351-0 [22] Logenthiran, T., Srinivasan, D., & Vanessa, K. W. M. (2014). Demand side management of smart grid: Load shifting and incentives. Journal of Renewable and Sustainable Energy, 6(3). https://doi.org/10.1063/1.4885106 [23] Ullah, K., Khan, T. A., Hafeez, G., Khan, I., Murawwat, S., Alamri, B., Ali, F., Ali, S., & Khan, S. (2022). Demand Side Management Strategy for Multi-Objective Day- 81 Ahead Scheduling considering wind energy in smart Grid. Energies, 15(19), 6900. https://doi.org/10.3390/en15196900 [24] Feizi, T., Von Der Heiden, L., Popova, R., Rojas, M., & Gerbaulet, J. (2019). Day Ahead Optimization Algorithm for Demand Side Management in Microgrids. ResearchGate. https://doi.org/10.5220/0007686600510057 [25] Chebbo, L., Bazzi, A. M., Yassine, A., Karaki, S. H., & Ghaddar, N. (2021). TOU Tariff System Using Data from Smart Meters. IEEE Xplore. https://doi.org/10.1109/peci51586.2021.9435264 [26] Salam, S. M., & Mohammad, N. (2021). Analyze the Impact of Demand Side Management on Grid Power for an Isolate Zone in a Sustainable IEEE 14 Bus System. IEEE Xplore. https://doi.org/10.1109/icict4sd50815.2021.9396975 [27] Weather Forecast API | Open-Meteo.com. (n.d.). Open-Meteo.com. https://open meteo.com/en/docs\ [28] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222-2232. [29] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. [30] Yu, H. F., Huang, F. L., & Lin, C. J. (2011). Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning, 85(1-2), 41-75. [31] Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451-2471. [32] Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850. [33] Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Systems with Applications, 140, 112896. [34] Brownlee, J. (2017). Introduction to Time Series Forecasting with Python: How to Prepare Data and Develop Models to Predict the Future. Machine Learning Mastery. [35] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. [36] Yao, Y., Rosasco, L., & Caponnetto, A. (2007). On early stopping in gradient descent learning. Constructive Approximation, 26(2), 289-315. 82 [37] Hutter, F., Kotthoff, L., & Vanschoren, J. (Eds.). (2019). Automated Machine Learning: Methods, Systems, Challenges. Springer. [38] Zhang, G., Eddy Patuwo, B., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35-62. [39] van der Meer, D. W., Veiga, G., & Almeida, R. M. (2018). Short-term load forecasting using long short-term memory neural networks. Energy, 156, 78-85. [40] Xu, None Yizheng, and J. V. Milanovic. “Developmnet of probabilistic daily demand curves for different categories of customers.” 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), Jan. 2013, https://doi.org/10.1049/cp.2013.0722. [41] Ponoćko, Jelena, and Jovica V. Milanović. “Smart meter-driven estimation of residential load flexibility.” CIRED - Open Access Proceedings Journal, vol. 2017, no. 1, Oct. 2017, pp. 1993–97. https://doi.org/10.1049/oap-cired.2017.0363. [42] ঢাকা ইড্লকট্রিক সাপ্লাই ককাম্পানন নলনিড্টড (কডসড্কা). (2023). Desco.gov.bd. https://desco.gov.bd en_US
dc.identifier.uri http://hdl.handle.net/123456789/2328
dc.description Supervised by Mr. Md. Arif Hossain, Assistant Professor, Department of Electrical and Electronic Engineering (EEE) Islamic University of Technology (IUT) Board Bazar, Gazipur, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2024 en_US
dc.description.abstract This paper optimizes home energy consumption using advanced load forecasting and dynamic demand side management (DSM) approaches for Bangladesh's changing energy landscape. Grid resilience, peak demand reduction, and energy efficiency are priorities. Long Short-Term Memory (LSTM) neural networks use historical data and weather variables to forecast energy usage. Univariate and multivariate analyses are performed, with multivariate models predicting load needs better. The research examines load-shifting solutions to balance energy usage and reduce grid stress during peak periods. This study assesses the cost-effectiveness of DSM interventions. The research shows that time-of-use tariffs and optimization algorithms can reduce costs and enhance load factors. A comprehensive literature evaluation highlights existing DSM and load forecasting methodologies and identifies critical research gaps. Optimized load-shifting lowers consumer prices and improves energy grid stability and efficiency. The findings imply that enhanced forecasting and DSM tactics can boost economic and environmental performance. The study stresses the need to use current engineering tools and approaches to produce sustainable energy solutions that promote ethical and social well-being. Policymakers and suppliers seeking energy sustainability and resilience in Bangladesh can learn from this research. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Elecrtonics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.subject DSM, LSTM, ToU tariff, Load shifting, Load forecasting en_US
dc.title Residential Load Forecasting and Dynamic Demand Side Management en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics