dc.identifier.citation |
[1] Bangladesh. (n.d.). World Bank. Retrieved June 11, 2024, from https://www.worldbank.org/en/country/bangladesh#:~:text=Bangladesh%20has%20an%2 0inspiring%20story%20of%20growth%20and,than%20US%2439.5%20billion%20to%20 support%20Bangladesh%E2%80%99s%20development%20journey. [2] হাইড্রাকার্ বন ইউননট, জ্বালানন ও খননজ সম্পদ নর্ভাগ. (n.d.). Www.hcu.org.bd. http://www.hcu.org.bd/ [3] Lampropoulos, I., Kling, W. L., Ribeiro, P. F., & Van Den Berg, J. (2013). History of demand side management and classification of demand response control schemes. IEEE Xplore. https://doi.org/10.1109/pesmg.2013.6672715 [4] Berkowitz, D. G., & Gellings, C. W. (1985). Glossary of terms related to Load Management, parts I and II. IEEE Power Engineering Review, PER-5(9), 35. https://doi.org/10.1109/mper.1985.5526441 [5] Taylor, J. W., & McSharry, P. E. (2007). Short-term load forecasting methods: An evaluation based on European data. IEEE Transactions on Power Systems, 22(4), 2213- 2219. [6] Shumway, R. H., & Stoffer, D. S. (2017). Time Series Analysis and Its Applications. Springer. [7] Deb, C., & Lee, S. E. (2018). Determining key variables influencing energy consumption in office buildings through cluster analysis of pre-and post-retrofit building data. Energy and Buildings, 159, 228-245. [8] Tao, H., & Fan, S. (2016). Electricity Load Forecasting: Fundamentals and Best Practices. Elsevier. [9] U.S. Energy Information Administration (EIA). (n.d.). Retrieved from https://www.eia.gov. [10] Navigant Research. (2019). Advanced Metering Infrastructure and the Global Smart Meter Market. Retrieved from https://www.navigantresearch.com. [11] International Energy Agency (IEA). (n.d.). Retrieved from https://www.iea.org. [12] Hong, T., & Fan, S. (2016). Probabilistic electric load forecasting: A tutorial review. International Journal of Forecasting, 32(3), 914-938. 80 [13] Ponocko, J., & Milanovic, J. (2019). The Effect of Load-follow-generation Motivated DSM Programme on Losses and Loadability of a Distribution Network with Renewable Generation. 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia). https://doi.org/10.1109/gtdasia.2019.8715988 [14] Xu, Y., & Milanovic, J. V. (2016). Day-Ahead prediction and shaping of dynamic response of demand at bulk supply points. IEEE Transactions on Power Systems, 31(4), 3100–3108. https://doi.org/10.1109/tpwrs.2015.2477559 [15] Ponocko, J., & Milanovic, J. V. (2020). Multi-Objective demand side management at distribution network level in support of transmission network operation. IEEE Transactions on Power Systems, 35(3), 1822–1833. https://doi.org/10.1109/tpwrs.2019.2944747 [16] Hosseini, S. M., Carli, R., & Dotoli, M. (2019). A Residential Demand-Side Management Strategy under Nonlinear Pricing Based on Robust Model Predictive Control. IEEE Xplore. https://doi.org/10.1109/smc.2019.8913892 [17] AboGaleela, M., El-Sobki, M., & El-Marsafawy, M. (2012, July 1). A two level optimal DSM load shifting formulation using genetics algorithm case study: Residential loads. IEEE Xplore. https://doi.org/10.1109/PowerAfrica.2012.6498651 [18] AboGaleela, M., El-Marsafawy, M., & El-Sobki, M. (2013). Optimal Scheme with Load Forecasting for Demand Side Management (DSM) in Residential Areas. Energy and Power Engineering, 05(04), 889–896. https://doi.org/10.4236/epe.2013.54b171 [19] Niharika, N., & Mukherjee, V. (2018). Day‐ahead demand side management using symbiotic organisms search algorithm. IET Generation, Transmission & Distribution, 12(14), 3487–3494. https://doi.org/10.1049/iet-gtd.2018.0106 [20] Logenthiran, T., Srinivasan, D., & Shun, T. Z. (2012). Demand side management in smart grid using heuristic optimization. IEEE Transactions on Smart Grid, 3(3), 1244– 1252. https://doi.org/10.1109/tsg.2012.2195686 [21] Saravanan, B. (2015). DSM in an area consisting of residential, commercial and industrial load in smart grid. Frontiers in Energy, 9(2), 211–216. https://doi.org/10.1007/s11708-015-0351-0 [22] Logenthiran, T., Srinivasan, D., & Vanessa, K. W. M. (2014). Demand side management of smart grid: Load shifting and incentives. Journal of Renewable and Sustainable Energy, 6(3). https://doi.org/10.1063/1.4885106 [23] Ullah, K., Khan, T. A., Hafeez, G., Khan, I., Murawwat, S., Alamri, B., Ali, F., Ali, S., & Khan, S. (2022). Demand Side Management Strategy for Multi-Objective Day- 81 Ahead Scheduling considering wind energy in smart Grid. Energies, 15(19), 6900. https://doi.org/10.3390/en15196900 [24] Feizi, T., Von Der Heiden, L., Popova, R., Rojas, M., & Gerbaulet, J. (2019). Day Ahead Optimization Algorithm for Demand Side Management in Microgrids. ResearchGate. https://doi.org/10.5220/0007686600510057 [25] Chebbo, L., Bazzi, A. M., Yassine, A., Karaki, S. H., & Ghaddar, N. (2021). TOU Tariff System Using Data from Smart Meters. IEEE Xplore. https://doi.org/10.1109/peci51586.2021.9435264 [26] Salam, S. M., & Mohammad, N. (2021). Analyze the Impact of Demand Side Management on Grid Power for an Isolate Zone in a Sustainable IEEE 14 Bus System. IEEE Xplore. https://doi.org/10.1109/icict4sd50815.2021.9396975 [27] Weather Forecast API | Open-Meteo.com. (n.d.). Open-Meteo.com. https://open meteo.com/en/docs\ [28] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222-2232. [29] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. [30] Yu, H. F., Huang, F. L., & Lin, C. J. (2011). Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning, 85(1-2), 41-75. [31] Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451-2471. [32] Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850. [33] Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Systems with Applications, 140, 112896. [34] Brownlee, J. (2017). Introduction to Time Series Forecasting with Python: How to Prepare Data and Develop Models to Predict the Future. Machine Learning Mastery. [35] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. [36] Yao, Y., Rosasco, L., & Caponnetto, A. (2007). On early stopping in gradient descent learning. Constructive Approximation, 26(2), 289-315. 82 [37] Hutter, F., Kotthoff, L., & Vanschoren, J. (Eds.). (2019). Automated Machine Learning: Methods, Systems, Challenges. Springer. [38] Zhang, G., Eddy Patuwo, B., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35-62. [39] van der Meer, D. W., Veiga, G., & Almeida, R. M. (2018). Short-term load forecasting using long short-term memory neural networks. Energy, 156, 78-85. [40] Xu, None Yizheng, and J. V. Milanovic. “Developmnet of probabilistic daily demand curves for different categories of customers.” 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), Jan. 2013, https://doi.org/10.1049/cp.2013.0722. [41] Ponoćko, Jelena, and Jovica V. Milanović. “Smart meter-driven estimation of residential load flexibility.” CIRED - Open Access Proceedings Journal, vol. 2017, no. 1, Oct. 2017, pp. 1993–97. https://doi.org/10.1049/oap-cired.2017.0363. [42] ঢাকা ইড্লকট্রিক সাপ্লাই ককাম্পানন নলনিড্টড (কডসড্কা). (2023). Desco.gov.bd. https://desco.gov.bd |
en_US |