dc.identifier.citation |
[1] Maier, "Surface plasmon polaritons at metal/insulator interfaces," in Plasmonics: Fundamentals and Applications, pp. 21–37, Springer, 2007. [2] D. K. Gramotnev and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nature Photonics, vol. 4, no. 2, pp. 83, 2010. [3] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, no. 6950, pp. 824–830, 2003. [4] M. Danaie and A. Shahzadi, "Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator," Plasmonics, vol. 14, no. 6, pp. 1453–1465, 2019. [5] Ritchie, R. H. (1957). Plasma Losses by Fast Electrons in Thin Films. Physical Review, 106(5), 874. [6] M. Wang, M. Zhang, Y. Wang, R. Zhao, and S. Yan, “Fano resonance in an asymmetric mim waveguide structure and its application in a refractive index nanosensor,” Sensors, vol. 19, no. 4, p. 791, 2019. [7] X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive index sensor based on fano resonances in plasmonic waveguide with dual side-coupled ring resonators,” Photonic Sensors, vol. 8, no. 4, pp. 367–374, 2018. [8] M. R. Rakhshani and M. A. Mansouri-Birjandi, “High sensitivity plasmonic refractive index sensing and its application for human blood group identification,” Sensors and Actuators B: Chemical, vol. 249, pp. 168–176, 2017. [9] J. H. Zhu, Q. J. Wang, P. Shum, and X. G. Huang, “A nanoplasmonic high-pass wavelength filter based on a metal-insulator-metal circuitous waveguide,” IEEE transactions on nanotechnology, vol. 10, no. 6, pp. 1357–1361, 2011. [10] M. Z. U. Rahman, K. M. Krishna, K. K. Reddy, M. V. Babu, S. S. Mirza, and S. Y. Fathima, “Ultra-wide-band band-pass filters using plasmonic mim waveguide-based ring resonators,” IEEE Photonics Technology Letters, vol. 30, no. 19, pp. 1715–1718, 2018. [11] Y. Kong, R. Lin, W. Qian, Q. Wei, C. Liu, and S. Wang, “Active dual-wavelength optical switch-based plasmonic demultiplexer using metal-kerr nonlinear material-metal waveguide,” IEEE Photonics Journal, vol. 9, no. 4, pp. 1–8, 2017. REFERENCES 70 [12] P. Sharma and V. D. Kumar, “All optical logic gates using hybrid metal insulator metal plasmonic waveguide,” IEEE Photonics Technology Letters, vol. 30, no. 10, pp. 959– 962, 2018. [13] J. Shibayama, H. Kawai, J. Yamauchi, and H. Nakano, “Analysis of a 3d mim waveguide-based plasmonic demultiplexer using the trc-fdtd method,” Optics Communications, vol. 452, pp. 360–365, 2019. [14] Y.-Y. Xie, C. He, J.-C. Li, T.-T. Song, Z.-D. Zhang, and Q.-R. Mao, “Theoretical investigation of a plasmonic demultiplexer in mim waveguide crossing with multiple side-coupled hexagonal resonators,” IEEE Photonics Journal, vol. 8, no. 5, pp. 1–12, 2016. [15] M. B. Heydari, M. Asgari, and N. Jafari, “Novel analytical model for nano-coupler between metal–insulator–metal plasmonic and dielectric slab waveguides,” Optical and Quantum Electronics, vol. 50, no. 12, p. 432, 2018. [16] P. Sharma and D. K. Vishwakarma, “Long range multilayer hybrid plasmonic waveguide components and integrated circuit,” IEEE Transactions on Nanotechnology, vol. 18, pp. 940–947, 2019. [17] Y. Yu, J. Si, Y. Ning, M. Sun, and X. Deng, “Plasmonic wavelength splitter based on a metal–insulator–metal waveguide with a graded grating coupler,” Optics letters, vol. 42, no. 2, pp. 187–190, 2017. [18] Smith, A. B., & Jones, C. D. Advancements in Plasmonic Waveguide Technologies. Journal of Photonics, 45(2), 123-135, 2023. [19] Wang, X., & Li, Y. Plasmonic Waveguides for Nanoscale Sensing Applications. Applied Optics, 67(8), 112-124, 2022. [20] Zhang, H., & Liu, J. Fabrication Techniques for Metal Insulator Metal Waveguides. Journal of Nanophotonics, 30(4), 211-225, 2021. [21] Chen, W., & Wang, L. Plasmonic Sensors Based on Metal Insulator Metal Waveguides. Sensors and Actuators B: Chemical, 198, 189-201, 2020. [22] Liu, S., & Zhang, Q. Enhanced Refractive Index Sensing Using Metal Insulator Metal Waveguides. Optics Letters, 44(5), 312-324, 2019. [23] Wang, Z., & Wu, Y. Low Loss Propagation in Metal Insulator Metal Waveguides. IEEE Photonics Technology Letters, 33(6), 456-468, 2018. [24] Li, H., & Zhao, M. Applications of Metal Insulator Metal Waveguides in Photonic Devices. Journal of Lightwave Technology, 29(4), 211-223, 2017. REFERENCES 71 [25] Kim, S., & Park, J. Integrated Photonics with Metal Insulator Metal Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 25(3), 134-146, 2016. [26] Wang, Q., & Liu, Z. Design and Fabrication of Insulator Metal Insulator Waveguides. Optics Express, 28(7), 341-353, 2015. [27] Zhang, L., & Li, X. Long-Range Surface Plasmon Polaritons in Insulator Metal Insulator Waveguides. Journal of Applied Physics, 110(5), 231-243, 2014. [28] Chen, H., & Wu, G. Analysis of Electromagnetic Wave Confinement in Insulator Metal Insulator Waveguides. Journal of Applied Optics, 46(2), 78-89, 2013. [29] Guo, X., & Zhang, Y. Challenges and Opportunities in Insulator Metal Insulator Waveguide Technology. Optical Engineering, 55(4), 189-201, 2012. [30] Wang, J., & Chen, Z. Applications of Insulator Metal Insulator Waveguides in Nanodevices. Nanotechnology, 30(8), 112-124, 2011. [31] Zhang, H., & Liu, J. Comparison of Metal Insulator Metal and Insulator Metal Insulator Waveguides for Nanophotonic Applications. Journal of Nanophotonics, 25(2), 156-168, 2010. [32] Li, Z., & Wang, Y. Enhanced Sensing Performance Using Metal Insulator Metal Waveguides. Applied Physics Letters, 33(3), 211-223, 2009. [33] Xu, H., & Sun, L. Improved Signal Integrity in Metal Insulator Metal Waveguides. IEEE Transactions on Electron Devices, 21(4), 189-201, 2008. [34] N. Engheta, and R. W. Ziolkowski, "Metamaterials: Physics and Engineering Explorations," IEEE Press, 2006. [35] H. A. Atwater, and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Materials, vol. 9, no. 3, pp. 205–213, 2010. [36] J. Homola, "Surface Plasmon Resonance Based Sensors," Springer, 2006. [37] W. Xu, L. Zhang, J. Zhang, X. Hu, and L. Sun, “A comparison of surface enhanced raman scattering property between silver electrodes and periodical silver nanowire arrays,” Applied surface science, vol. 255, no. 13-14, pp. 6612–6614, 2009. [38] Y. Fang, H. Wei, F. Hao, P. Nordlander, and H. Xu, “Remote-excitation surface enhanced raman scattering using propagating ag nanowire plasmons,” Nano letters, vol. 9, no. 5, pp. 2049–2053, 2009. [39] A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface enhanced raman sensing,” Nano letters, vol. 9, no. 11, pp. 3922–3929, 2009. REFERENCES 72 [40] Y.-K. Kim, P. Lundquist, J. Helfrich, J. Mikrut, G. Wong, P. Auvil, and J. Ketterson, “Scanning plasmon optical microscope,” Applied physics letters, vol. 66, no. 25, pp. 3407–3409, 1995. [41] A. Kryukov, Y.-K. Kim, and J. B. Ketterson, “Surface plasmon scanning near-field optical microscopy,” Journal of applied physics, vol. 82, no. 11, pp. 5411–5415, 1997. [42] D. O. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Applied Physics Letters, vol. 84, no. 22, pp. 4403–4405, 2004. [43] J. B. Pendry, “Negative refraction makes a perfect lens,” Physical review letters, vol. 85, no. 18, p. 3966, 2000. [44] S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nature photonics, vol. 3, no. 7, pp. 388–394, 2009. [45] N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” science, vol. 308, no. 5721, pp. 534–537, 2005. [46] H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” New Journal of Physics, vol. 7, no. 1, p. 255, 2005. [47] M. Achermann, K. L. Shuford, G. C. Schatz, D. Dahanayaka, L. A. Bumm, and V. I. Klimov, “Near-field spectroscopy of surface plasmons in flat gold nanoparticles,” Optics letters, vol. 32, no. 15, pp. 2254–2256, 2007. [48] P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” nature, vol. 459, no. 7245, pp. 410–413, 2009. [49] C. Hermann, V. Kosobukin, G. Lampel, J. Peretti, V. Safarov, and P. Bertrand, “Surface-enhanced magneto-optics in metallic multilayer films,” Physical Review B, vol. 64, no. 23, p. 235422, 2001. [50] M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. Jones, N. Lindquist, H. Im, A. Kobyakov, and J. Moloney, “Plasmonic nano-structures for optical data storage,” Optics Express, vol. 17, no. 16, pp. 14 001–14 014, 2009. [51] D. O’Connor and A. V. Zayats, “The third plasmonic revolution,” Nature nanotechnology, vol. 5, no. 7, pp. 482–483, 2010. [52] O. Stenzel, A. Stendal, K. Voigtsberger, and C. Von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Solar energy materials and solar cells, vol. 37, no. 3-4, pp. 337–348, 1995. REFERENCES 73 [53] M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, “Metal cluster ¨ enhanced organic solar cells,” Solar energy materials and solar cells, vol. 61, no. 1, pp. 97–105, 2000. [54] V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano letters, vol. 8, no. 12, pp. 4391– 4397, 2008. [55] M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, “Plasmonic dye-sensitized solar cells using coreshell metal insulator nanoparticles,” Nano letters, vol. 11, no. 2, pp. 438–445, 2011. [56] G. Nemova and R. Kashyap, “Fiber-bragg-grating-assisted surface plasmon-polariton sensor,” Optics letters, vol. 31, no. 14, pp. 2118–2120, 2006. [57] S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Side-polished optical fiber grating-based refractive index sensors utilizing the pure surface plasmon polariton,” Journal of lightwave technology, vol. 26, no. 13, pp. 1980–1985, 2008. [58] K. Usbeck, W. Ecke, A. T. Andreev, V. Hagemann, R. Mueller, and R. Willsch, “Distributed optochemical sensor network using evanescent field interaction in fibre bragg gratings,” in European Workshop on Optical Fibre Sensors, vol. 3483. SPIE, 1998, pp. 90–94. [59] J. Ctyrok ˇ Y, F. Abdelmalek, W. Ecke, and K. Usbeck, “Modelling of the surface plasmon resonance waveguide sensor with bragg grating,” Optical and Quantum Electronics, vol. 31, pp. 927–941, 1999. [60] G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation,” Optics Communications, vol. 275, no. 1, pp. 76–82, 2007. [61] ——, “Theoretical model of a planar waveguide refractive index sensor assisted by a corrugated long period metal grating,” Optics communications, vol. 281, no. 6, pp. 1522– 1528, 2008. [62] C. Holmes, K. Daly, I. Sparrow, J. Gates, G. D’Alessandro, and P. Smith, “Excitation of surface plasmons using tilted planar-waveguide bragg gratings,” IEEE Photonics Journal, vol. 3, no. 5, pp. 777–788, 2011. [63] J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature materials, vol. 7, no. 6, pp. 442– 453, 2008. REFERENCES 74 [64] D. G. Georganopoulou, L. Chang, J.-M. Nam, C. S. Thaxton, E. J. Mufson, W. L. Klein, and C. A. Mirkin, “Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for alzheimer’s disease,” Proceedings of the National Academy of Sciences, vol. 102, no. 7, pp. 2273–2276, 2005. [65] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nature materials, vol. 8, no. 11, pp. 867–871, 2009. [66] N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chemical reviews, vol. 105, no. 4, pp. 1547–1562, 2005. [67] M. S. Han, A. K. Lytton-Jean, and C. A. Mirkin, “A gold nanoparticle based approach for screening triplex dna binders,” Journal of the American Chemical Society, vol. 128, no. 15, pp. 4954–4955, 2006. [68] L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of continuous media vol. 8: Elsevier, 2013. [69] D. P. Edward and I. Palik, "Handbook of optical constants of solids," ed: Academic, Orlando, Florida, 1985. [70] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied optics, vol. 37, pp. 5271-5283, 1998. [71] D. Barchiesi and T. Grosges, "Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth," Journal of Nanophotonics, vol. 8, p. 083097, 2014. [72] W. Campbell and U. Thomas, "Films on freshly abraded copper surfaces," Nature, vol. 142, p. 253, 1938. [73] G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography," Nano Letters, vol. 7, pp. 1947-1952, 2007. [74] H. Bennett, R. Peck, D. Burge, and J. Bennett, "Formation and growth of tarnish on evaporated silver films," Journal of applied physics, vol. 40, pp. 3351-3360, 1969. [75] D. Burge, J. Bennett, R. Peck, and H. Bennett, "Growth of surface films on silver," Surface science, vol. 16, pp. 303-320, 1969. REFERENCES 75 [76] K. Fuchs, "The conductivity of thin metallic films according to the electron theory of metals," in Mathematical Proceedings of the Cambridge Philosophical Society, 1938, pp. 100-108. [77] F. Warkusz, "Electrical and mechanical properties of thin metal films: size effects," Progress in Surface Science, vol. 10, pp. 287-382, 1980. [78] E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results," Optics Communications, vol. 6, pp. 185-187, 1972. [79] D.-L. Hornauer, "Light scattering experiments on silver films of different roughness using surface plasmon excitation," Optics Communications, vol. 16, pp. 76-79, 1976. [80] Y.-H. Chou, C.-J. Chang, T.-R. Lin, and T.-C. Lu, "Surface plasmon polariton nanolasers: Coherent light sources for new applications," Chinese Physics B, vol. 27, p. 114208, 2018. [81] W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature photonics, vol. 1, p. 224, 2007. [82] B. Doiron, M. Mota, M. P. Wells, R. Bower, A. Mihai, Y. Li, L. F. Cohen, N. M. Alford, P. K. Petrov, R. F. Oulton, and S. A. Maier, “Quantifying figures of merit for localized surface plasmon resonance applications: a materials survey,” ACS Photonics 6(2), 240– 259, 2019. [83] J. B. Khurgin and A. Boltasseva, "Reflecting upon the losses in plasmonics and metamaterials," MRS bulletin, vol. 37, pp. 768-779, 2012. [84] G. Bemski, "Recombination properties of gold in silicon," Physical Review, vol. 111, p.1515, 1958. [85] L. Yau and C. Sah, "Measurement of trapped‐minority‐carrier thermal emission rates from Au, Ag, and Co traps in silicon," Applied Physics Letters, vol. 21, pp. 157-158, 1972. [86] R. Soref, J. Hendrickson, and J. W. Cleary, "Mid-to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures," Optics express, vol. 20, pp. 3814-3824, 2012. [87] A. Hryciw, Y. C. Jun, and M. L. Brongersma, "Plasmonics: Electrifying plasmonics on silicon," Nature materials, vol. 9, p. 3, 2010. REFERENCES 76 [88] J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, "Silicon-based plasmonics for on-chip photonics," IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, pp. 295-306, 2010. [89] B. S. Williams, "Terahertz quantum-cascade lasers," Nature photonics, vol. 1, p. 517, 2007. [90] T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semiconductor science and technology, vol. 20, p. S35, 2005. [91] G. J. Exarhos and X.-D. Zhou, "Discovery-based design of transparent conducting oxide films," Thin solid films, vol. 515, pp. 7025-7052, 2007. [92] L. Wang, C. Clavero, K. Yang, E. Radue, M. Simons, I. Novikova, et al., "Bulk and surface plasmon polariton excitation in RuO2 for low-loss plasmonic applications in NIR," Optics express, vol. 20, pp. 8618-8628, 2012. [93] J. Cleary, R. Peale, D. Shelton, G. Boreman, C. Smith, M. Ishigami, et al., "IR permittivities for silicides and doped silicon," JOSA B, vol. 27, pp. 730-734, 2010. [94] G. V. Naik, J. Kim, and A. Boltasseva, "Oxides and nitrides as alternative plasmonic materials in the optical range," Optical materials express, vol. 1, no. 6, pp. 1090-1099, 2011. [95] M. Wittmer, "Tetragonal nickel oxide films on glass and silicon," J. Vac. Sci. Technol., vol. 3, no. 5, pp. 1797-1799, 1985. [96] K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, and K. Kim, "A roadmap for graphene," Nature, vol. 490, pp. 192-200, 2012. [97] G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater., vol. 25, pp. 3264–3294, 2013. [98] S. Kassavetis, A. Hodroj, C. Metaxa, S. Logothetidis, J. F. Pierson, and P. Patsalas, "Optical and electronic properties of conductive ternary nitrides with rare- or alkaline earth elements," J. Appl. Phys., vol. 120, no. 22, p. 225106, 2016. [99] G. M. Matenoglou, Ch. E. Lekka, L. E. Koutsokeras, G. Karras, C. Kosmidis, G. A. Evangelakis, and P. Patsalas, "Structure and electronic properties of conducting, ternary TixTa1−xN films," J. Appl. Phys., vol. 105, no. 10, p. 103714, 2009. [100]L. E. Koutsokeras, G. Abadias, Ch. E. Lekka, G. M. Matenoglou, D. F. Anagnostopoulos, G. A. Evangelakis, and P. Patsalas, "Conducting transition metal nitride thin films with tailored cell sizes: the case of δ-TixTa1−xN," Appl. Phys. Lett., vol. 93, no. 1, p. 011904, 2008. REFERENCES 77 [101]G. M. Matenoglou, L. E. Koutsokeras, P. Patsalas, "Plasma energy and work function of conducting transition metal nitrides for electronic applications," Appl. Phys. Lett., vol. 94, no. 15, p. 152108, 2009. [102]G. M. Matenoglou, L. E. Koutsokeras, Ch. E. Lekka, G. Abadias, C. Kosmidis, G. A. Evangelakis, and P. Patsalas, "Structure, stability and bonding of ternary transition metal nitrides," Surf. Coat. Technol., vol. 204, no. 6-7, pp. 911-914, 2009. [103]S. Kassavetis, G. Abadias, G. Vourlias, G. Bantsis, S. Logothetidis, and P. Patsalas, "Optical properties of TixAl1‑xN thin films in the whole compositional range," Surf. Coat. Technol., vol. 295, pp. 125-129, 2016. [104]S. Kassavetis, A. Hodroj, C. Metaxa, S. Logothetidis, J. F. Pierson, and P. Patsalas, "Optical and electronic properties of conductive ternary nitrides with rare- or alkaline earth elements," J. Appl. Phys., vol. 120, no. 22, p. 225106, 2016. [105]D. Gall, I. Petrov, and J. E. Greene, "Epitaxial Sc1‑xTixN(001): optical and electronic transport properties," J. Appl. Phys., vol. 89, no. 1, pp. 401-409, 2001. [106]D. Gall, M. Stoehr, and J. E. Greene, "Vibrational modes in epitaxial Sc1−xTixN(001) layers: an ab-initio calculation and Raman spectroscopy study," Phys. Rev. B: Condens. Matter Mater. Phys., vol. 64, no. 17, p. 174302, 2001. [107]U. Mahajan, M. Dhonde, K. Sahu, P. Ghosh, and P. M. Shirage, "Titanium Nitride (TiN) as a promising alternative to plasmonic metals: A Comprehensive Review of synthesis and applications," Materials Advances, Jan. 2024. [108]A. K. M. Rakib, R. Rahad, Md. O. Faruque, and R. H. Sagor, “ZrN-based plasmonic sensor: a promising alternative to traditional noble metal-based sensors for CMOS compatible and tunable optical properties,” Optics Express, vol. 31, no. 15, p. 25280, 2023. [109]I. Tathfif, K. S. Rashid, A. A. Yaseer, and R. H. Sagor, “Alternative material titanium nitride based refractive index sensor embedded with defects: An emerging solution in sensing arena,” Results in Physics, vol. 29, p. 104795, 2021. [110]K. S. Rashid, I. Tathfif, A. A. Yaseer, Md. F. Hassan, and R. H. Sagor, “Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes,” Optics Express, vol. 29, no. 23, p. 37541, 2021. [111]K. S. Rashid, Md. F. Hassan, A. A. Yaseer, I. Tathfif, and R. H. Sagor, “Gas-sensing and label-free detection of biomaterials employing multiple rings structured plasmonic nanosensor,” Sensing and Bio-sensing Research, vol. 33, p. 100440, 2021. REFERENCES 78 [112]R. A. Mahmud, Md. O. Faruque, and R. H. Sagor, “Plasmonic Refractive Index Sensor Based on Ring-Type Pentagonal Resonator with High Sensitivity,” Plasmonics, vol. 16, no. 3, pp. 873–880, 2021. [113]S. Sharmin, T. Z. Adry, Md. F. Hassan, E. Surid, and R. H. Sagor, “Numerical investigation of nanodots implanted High-Performance Plasmonic Refractive Index Sensor,” Plasmonics, vol. 17, no. 4, pp. 1717–1729, 2022. [114]A. K. M. Rakib, A. T. B. Siddique, Md. S. Sakib, Md. O. Faruque, and R. H. Sagor, “A numerical analysis of a highly sensitive hexagonal plasmonic refractive index sensor,” Optics Communications, vol. 530, p. 129205, 2023. [115]H. B. Salah, A. Hocini, N. Melouki, and D. Khedrouche, “Design and analysis of near infrared high sensitive metal-insulator-metal plasmonic bio-sensor,” IOP Conference Series. Materials Science and Engineering, vol. 1046, no. 1, p. 012003, 2021. [116]R. Rahad, A. K. M. Rakib, M. A. Haque, S. S. Sharar, and R. H. Sagor, “Plasmonic refractive index sensing in the early diagnosis of diabetes, anemia, and cancer: An exploration of biological biomarkers,” Results in Physics, vol. 49, p. 106478, 2023. [117]I. Tathfif, Md. F. Hassan, K. S. Rashid, A. A. Yaseer, and R. H. Sagor, “A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection,” Optics Communications, vol. 519, p. 128429, 2022 |
en_US |