| Login
dc.contributor.author | Fahim, Md. Faiyaz Abrar | |
dc.contributor.author | Bari, Redwan-Ul- | |
dc.contributor.author | Rahman, Mizanur | |
dc.date.accessioned | 2025-02-28T07:01:56Z | |
dc.date.available | 2025-02-28T07:01:56Z | |
dc.date.issued | 2024-08-18 | |
dc.identifier.citation | [1] Q. Wang, J.-Y. Jing, B.-T. Wang, and S. Li, “Recent progress and applications of optical microfiber and nanofiber devices,” en, Instrum. Sci. Technol., vol. 47, no. 2, pp. 117–139, Mar. 2019. [2] M. Sibley, Optical Communications: Components and Systems. 2020. [3] J. Laegsgaard, K. P. Hansen, M. D. Nielsen, et al., “Photonic crystal fibers,” in Proceedings of the 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference - IMOC 2003. (Cat. No.03TH8678), Foz do Iguacu, Brazil: IEEE, 2004. [4] T. P. Hansen, J. Broeng, S. E. B. Libori, et al., “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett., vol. 13, no. 6, pp. 588– 590, Jun. 2001. [5] T. Sylvestre, E. Genier, A. N. Ghosh, et al., “Recent progress in fiber-based super continuum sources,” in Fiber Lasers and Glass Photonics: Materials through Ap plications III, S. Taccheo, M. Ferrari, and A. B. Seddon, Eds., Strasbourg, France: SPIE, May 2022. [6] R. K. Sinha and S. K. Varshney, “Dispersion properties of photonic crystal fibers,” en, vol. 37, no. 2, pp. 129–132, Apr. 2003. [7] X. Yang, C. Gong, Y. Liu, Y. Rao, M. Smietana, and Y. Gong, “Recent progress in fiber optofluidic lasing and sensing,” en, Photonic Sens., vol. 11, no. 2, pp. 262– 278, Jun. 2021. [8] H. C. L. Tsui and N. Healy, “Recent progress of semiconductor optoelectronic fibers,” en, Front. Optoelectron., vol. 14, no. 4, pp. 383–398, Dec. 2021. [9] A. Bhargav and N. Kumar Rai, “SPR-based biosensors in the diagnostics and ther apeutics,” in Recent Advances in Biosensor Technology, BENTHAM SCIENCE PUBLISHERS, Apr. 2023, pp. 78–96. [10] N. Islam, M. Faizul Huq Arif, M. Abu Yousuf, and S. Asaduzzaman, “Highly sen sitive open channel based PCF-SPR sensor for analyte refractive index sensing,” en, Results Phys., vol. 46, no. 106266, p. 106 266, Mar. 2023. Bibliography 87 [11] B. Mulyanti, H. S. Nugroho, C. Wulandari, et al., “SPR-based sensor for the early detection or monitoring of kidney problems,” en, Int. J. Biomater., vol. 2022, p. 9 135 172, Jun. 2022. [12] C. M. Miyazaki, F. M. Shimizu, and M. Ferreira, “Surface plasmon resonance (SPR) for sensors and biosensors,” in Nanocharacterization Techniques, Elsevier, 2017, pp. 183–200. [13] C. Zhang and F. Ito, “Recent progress of fiber diagnostic technologies for opti cal fiber networks: Distributed fiber sensing and fiber characterization,” in Metro and Data Center Optical Networks and Short-Reach Links V, M. Glick, A. K. Srivastava, Y. Akasaka, S. Mikroulis, B. B. Dingel, and R. Llorente, Eds., San Francisco, United States: SPIE, Mar. 2022. [14] L. Li, W. Li, X. Zong, Y. Zheng, L. Cui, and Y. Liu, “Label-free detection of ultra-low weight molecules based on fiber optic sensors with low loss dielectric nanostructures,” J. Lightwave Technol., vol. 41, no. 13, pp. 4405–4410, Jul. 2023. [15] M. A. Islam, M. R. Islam, S. Siraz, M. Rahman, M. S. Anzum, and F. Noor, “Wheel structured zeonex-based photonic crystal fiber sensor in THz regime for sensing milk,” en, Appl. Phys. A Mater. Sci. Process., vol. 127, no. 5, p. 311, Apr. 2021. [16] M. R. Islam, M. M. I. Khan, R. Al Rafid, et al., “Trigonal cluster-based ultra sensitive surface plasmon resonance sensor for multipurpose sensing,” en, Sens. BioSensing Res., vol. 35, no. 100477, p. 100 477, Feb. 2022. [17] X. Li, L. Zhang, T. Geng, and Y. Qiao, “Highly sensitive bending sensor based on c-shaped-core long-period fiber gratings,” IEEE Sens. J., vol. 22, no. 24, pp. 23 968– 23 974, Dec. 2022. [18] D. Yang, Y. Li, B. Xu, Z. Wei, T. Cheng, and X. Wang, “Modified d-type surface plasmon resonance (SPR)-based photonic crystal fiber (PCF) for application as a polarization filter and refractive index sensor,” en, Instrum. Sci. Technol., pp. 1– 21, Aug. 2022. [19] M. Benhaddad and F. Kerrour, “Modeling of low non-linearity and low confine ment loss photonic crystal fiber by introducing asymmetric defect structures,” en, Phosphorus Sulfur Silicon Relat. Elem., vol. 195, no. 11, pp. 957–959, Nov. 2020. [20] M. R. Islam, M. M. I. Khan, S. Siraz, et al., “Design and analysis of a QC SPR-PCF sensor for multipurpose sensing with supremely high FOM,” en, Appl. Nanosci., vol. 12, no. 1, pp. 29–45, Jan. 2022. 88 Bibliography [21] M. S. Wahl, Ø. Wilhelmsen, and D. R. Hjelme, “Addressing challenges in fabri cating reflection-based fiber optic interferometers,” en, Sensors (Basel), vol. 19, no. 18, p. 4030, Sep. 2019. [22] A. H. El-Saeed, A. E. Khalil, M. F. O. Hameed, M. Y. Azab, and S. S. A. Obayya, “Highly sensitive SPR PCF biosensors based on Ag/TiN and Ag/ZrN configura tions,” en, Opt. Quantum Electron., vol. 51, no. 2, Feb. 2019. [23] M. J. B. M. Leon and M. A. Kabir, “Design of a liquid sensing photonic crys tal fiber with high sensitivity, bireferingence & low confinement loss,” en, Sens. BioSensing Res., vol. 28, no. 100335, p. 100 335, Jun. 2020. [24] S. Singh, B. Chaudhary, A. Upadhyay, D. Sharma, N. Ayyanar, and S. A. Taya, “A review on various sensing prospects of SPR based photonic crystal fibers,” en, Photonics Nanostruct., vol. 54, no. 101119, p. 101 119, May 2023. [25] M. Elsherif, A. E. Salih, M. G. Muñoz, et al., “Optical fiber sensors: Working principle, applications, and limitations,” en, Adv. Photonics Res., p. 2 100 371, Jul. 2022. [26] F. Wang, Y. Wei, and Y. Han, “High sensitivity and wide range refractive index sensor based on surface plasmon resonance photonic crystal fiber,” en, Sensors (Basel), vol. 23, no. 14, Jul. 2023. [27] T. Li, L. Zhu, X. Yang, X. Lou, and L. Yu, “A refractive index sensor based on h-shaped photonic crystal fibers coated with ag-graphene layers,” en, Sensors (Basel), vol. 20, no. 3, p. 741, Jan. 2020. [28] M. B. Hossain, T. Mahendiran, L. F. Abdulrazak, I. M. Mehedi, M. A. Hossain, and M. M. Rana, “Numerical analysis of gold coating based quasi d-shape dual core pcf spr sensor,” Optical and Quantum Electronics, vol. 52, pp. 1–13, 2020. [29] Z. Guo, Z. Fan, X. Kong, and Z. Meng, “Photonic crystal fiber based wide-range of refractive index sensor with phase matching between core mode and metal defect mode,” Optics Communications, vol. 461, p. 125 233, 2020, ISSN: 0030- 4018. DOI: https://doi.org/10.1016/j.optcom.2020.125233. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S003040182030002X. [30] S. Jain, K. Choudhary, and S. Kumar, “Photonic crystal fiber-based spr sensor for broad range of refractive index sensing applications,” Optical Fiber Technol ogy, vol. 73, p. 103 030, 2022, ISSN: 1068-5200. DOI: https://doi.org/ 10.1016/j.yofte.2022.103030. [Online]. Available: https://www. sciencedirect.com/science/article/pii/S1068520022002139. Bibliography 89 [31] A. A. S. Falah, W. R. Wong, G. A. Mahdiraji, and F. R. Mahamd Adikan, “Single mode d-shaped photonic crystal fiber surface plasmon resonance sensor with open microchannel,” en, Opt. Fiber Technol., vol. 74, no. 103105, p. 103 105, Dec. 2022. [32] M. A. Mahfuz, M. A. Hossain, E. Haque, N. H. Hai, Y. Namihira, and F. Ahmed, “Dual-core photonic crystal fiber-based plasmonic RI sensor in the visible to near IR operating band,” IEEE Sens. J., vol. 20, no. 14, pp. 7692–7700, Jul. 2020. [33] M. R. Islam, M. A. Jamil, M. S.-U. Zaman, et al., “Design and analysis of bire fringent SPR based PCF biosensor with ultra-high sensitivity and low loss,” en, Optik (Stuttg.), vol. 221, no. 165311, p. 165 311, Nov. 2020. [34] A. K. Shakya, A. Ramola, S. Singh, and V. Van, “Design of an ultra-sensitive bimetallic anisotropic PCF SPR biosensor for liquid analytes sensing,” en, Opt. Express, vol. 30, no. 6, pp. 9233–9255, Mar. 2022. [35] M. Rakibul Islam, A. N. M. Iftekher, M. S. Anzum, M. Rahman, and S. Siraz, “Lspr based double peak double plasmonic layered bent core pcf-spr sensor for ultra-broadband dual peak sensing,” IEEE Sensors Journal, vol. 22, no. 6, pp. 5628– 5635, 2022. DOI: 10.1109/JSEN.2022.3149715. [36] M. R. Islam, K. R. Hasan, M. M. I. Khan, et al., “Design of a dual cluster and dual array-based pcf-spr biosensor with ultra-high ws and fom,” Plasmonics, vol. 17, no. 3, pp. 1171–1182, 2022. [37] P. Damborský, J. Švitel, and J. Katrlík, “Optical biosensors,” Essays in Biochem istry, vol. 60, no. 1, pp. 91–100, Jun. 2016. DOI: 10.1042/EBC20150010. [Online]. Available: https://doi.org/10.1042/EBC20150010. [38] H. F. Fakhruldeen, A. Zahid, R. Jaafar, and A. Abdulkareem, “An overview of photonic crystal fiber (pcf),” vol. 9, pp. 17 250–17 256, Apr. 2019. [39] W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive noniso topic detection,” en, Science, vol. 281, no. 5385, pp. 2016–2018, Sep. 1998. [40] B. Liu, Y. Lu, X. Yang, and J. Yao, “Tunable surface plasmon resonance sensor based on photonic crystal fiber filled with gold nanoshells,” Plasmonics, vol. 13, no. 3, pp. 763–770, Jun. 2018. [41] M. R. Islam, M. A. Hossain, K. M. A. Talha, and R. K. Munia, “A novel hollow core photonic sensor for liquid analyte detection in the terahertz spectrum: Design and analysis,” en, Opt. Quantum Electron., vol. 52, no. 9, Sep. 2020. 90 Bibliography [42] N. De Acha, A. B. Socorro-Leránoz, C. Elosúa, and I. R. Matías, “Trends in the design of intensity-based optical fiber biosensors (2010–2020),” Biosensors, vol. 11, no. 6, p. 197, Jun. 2021. DOI: 10.3390/bios11060197. [Online]. Available: https://doi.org/10.3390/bios11060197. [43] B. Troia, A. Paolicelli, and M. De Vittorio, Photonic Crystals for Optical Sensing: A Review. InTech eBooks, 2013. DOI: 10.5772/53897. [Online]. Available: https://doi.org/10.5772/53897. [44] F. Markey, “Principles of surface plasmon resonance,” in Real-Time Analysis of Biomolecular Interactions, Tokyo: Springer Japan, 2000, pp. 13–22. [45] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer tracts in modern physics), en. Berlin, Germany: Springer, Mar. 1988. [46] K.-W. Koch, “Surface plasmon resonance,” in Encyclopedic Reference of Ge nomics and Proteomics in Molecular Medicine, Springer Berlin Heidelberg, 2006, pp. 1832–1835. [47] M. C. Fenta, D. K. Potter, and J. Szanyi, “Fibre optic methods of prospecting: A comprehensive and modern branch of geophysics,” en, Surv. Geophys., Mar. 2021. [48] M. S. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A gold coated plasmonic sensor for biomedical and biochemical analyte detection,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya: IEEE, Sep. 2018. [49] D. Monzón Hernández, J. S. Velázquez-González, D. Luna-Moreno, M. Torres Cisneros, and I. Hernández-Romano, “Prism-based surface plasmon resonance for dual-parameter sensing,” IEEE Sensors Journal, vol. 18, no. 10, pp. 4030– 4037, 2018. DOI: 10.1109/JSEN.2018.2818064. [50] S. Wang, Y. Lu, W. Ma, N. Liu, and S. Fan, “D-shaped surface plasmon photonic crystal fiber temperature sensor,” en, Plasmonics, vol. 17, no. 5, pp. 1911–1919, Oct. 2022. [51] H. Liang, Y. Feng, H. Liu, W. Han, and T. Shen, “High-performance PCF-SPR sensor coated with ag and graphene for humidity sensing,” en, Plasmonics, vol. 17, no. 4, pp. 1765–1773, Aug. 2022. [52] M. Zhu, L. Yang, J. Lv, et al., “Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with gold film,” en, Plasmonics, vol. 17, no. 2, pp. 543–550, Apr. 2022. Bibliography 91 [53] S. Chowdhury, L. Faisal Abdulrazak, S. Akhtar Mitu, et al., “A highly sensi tive multi-channel SPR-PCF based biosensor with deep learning prediction ap proach,” en, Alex. Eng. J., vol. 77, pp. 189–203, Aug. 2023. [54] K. M. Mustafizur Rahman, M. Shah Alam, R. Ahmed, and M. Asiful Islam, “Ir regular hexagonal core based surface plasmon resonance sensor in near-infrared region,” en, Results Phys., vol. 23, no. 103983, p. 103 983, Apr. 2021. [55] M. R. Islam, A. N. M. Iftekher, K. R. Hasan, et al., “Design and numerical analy sis of a gold-coated photonic crystal fiber based refractive index sensor,” en, Opt. Quantum Electron., vol. 53, no. 2, Feb. 2021. [56] S. Islam, M. R. Islam, M. Faisal, et al., “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” en, Opt. Eng., vol. 55, no. 7, p. 076 117, Jul. 2016. [57] M. R. Hasan, S. Akter, T. Khatun, A. A. Rifat, and M. S. Anower, “Dual-hole unit based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance,” en, Opt. Eng., vol. 56, no. 4, p. 043 108, Apr. 2017. [58] K. Ahmed, F. Ahmed, S. Roy, et al., “Refractive index-based blood components sensing in terahertz spectrum,” IEEE Sens. J., vol. 19, no. 9, pp. 3368–3375, May 2019. [59] I. K. Yakasai, P. E. Abas, S. Ali, and F. Begum, “Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation,” en, Opt. Quantum Electron., vol. 51, no. 4, Apr. 2019. [60] M. S. Islam, C. M. B. Cordeiro, J. Sultana, et al., “A hi-bi ultra-sensitive surface plasmon resonance fiber sensor,” IEEE Access, vol. 7, pp. 79 085–79 094, 2019. [61] S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon reso nance: Design and analysis,” en, Sens. BioSensing Res., vol. 18, pp. 7–12, Apr. 2018. [62] M. S. Aruna Gandhi, K. Senthilnathan, P. R. Babu, and Q. Li, “Visible to near infrared highly sensitive microbiosensor based on surface plasmon polariton with external sensing approach,” en, Results Phys., vol. 15, no. 102590, p. 102 590, Dec. 2019. [63] M. Rakibul Islam, M. M. I. Khan, F. Mehjabin, J. Alam Chowdhury, and M. Islam, “Design of a fabrication friendly & highly sensitive surface plasmon resonance based photonic crystal fiber biosensor,” en, Results Phys., vol. 19, no. 103501, p. 103 501, Dec. 2020. 92 Bibliography [64] H. Wang, X. Yan, S. Li, and X. Zhang, “Tunable surface plasmon resonance po larization beam splitter based on dual-core photonic crystal fiber with magnetic fluid,” en, Opt. Quantum Electron., vol. 49, no. 11, Nov. 2017. [65] H. Huang, Z. Zhang, Y. Yu, et al., “A highly magnetic field sensitive photonic crystal fiber based on surface plasmon resonance,” en, Sensors (Basel), vol. 20, no. 18, p. 5193, Sep. 2020. [66] M. Rakibul Islam, A. N. M. Iftekher, M. S. Anzum, M. Rahman, and S. Siraz, “LSPR based double peak double plasmonic layered bent core PCF-SPR sensor for ultra-broadband dual peak sensing,” IEEE Sens. J., vol. 22, no. 6, pp. 5628– 5635, Mar. 2022. [67] C. Liu, L. Wang, L. Yang, et al., “The single-polarization filter composed of gold coated photonic crystal fiber,” en, Phys. Lett. A, vol. 383, no. 25, pp. 3200–3206, Sep. 2019. [68] Q. Liu, S. Li, H. Li, et al., “Broadband single-polarization photonic crystal fiber based on surface plasmon resonance for polarization filter,” en, Plasmonics, vol. 10, no. 4, pp. 931–939, Aug. 2015. [69] M. S. Islam, C. M. B. Cordeiro, M. J. Nine, et al., “Experimental study on glass and polymers: Determining the optimal material for potential use in terahertz technology,” IEEE Access, vol. 8, pp. 97 204–97 214, 2020. [70] R. Paschotta, “Silica fibers,” in RP Photonics Encyclopedia, RP Photonics AG, 2004. [71] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” en, Laser Photon. Rev., vol. 4, no. 6, pp. 795–808, Nov. 2010. [72] G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” en, Adv. Mater., vol. 25, no. 24, pp. 3264–3294, Jun. 2013. [73] H. Abdullah, K. Ahmed, and S. A. Mitu, “Ultrahigh sensitivity refractive in dex biosensor based on gold coated nano-film photonic crystal fiber,” en, Results Phys., vol. 17, no. 103151, p. 103 151, Jun. 2020. [74] M. S. Islam, M. R. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Exposed-core localized surface plasmon resonance biosensor,” en, J. Opt. Soc. Am. B, vol. 36, no. 8, p. 2306, Aug. 2019. [75] H. N. Rafi, M. R. Kaysir, and M. Jahirul Islam, “Air-hole attributed performance of photonic crystal fiber-based SPR sensors,” en, Sens. BioSensing Res., vol. 29, no. 100364, p. 100 364, Aug. 2020. Bibliography 93 [76] A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with se lective analyte channels and graphene-silver deposited core,” en, Sensors (Basel), vol. 15, no. 5, pp. 11 499–11 510, May 2015. [77] M. S. Islam, J. Sultana, K. Ahmed, et al., “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors Journal, vol. 18, pp. 575–582, 2018. DOI: 10.1109/JSEN.2017. 2775642. [Online]. Available: https : / / doi . org / 10 . 1109 / JSEN . 2017.2775642. [78] M. S. Islam, J. Sultana, R. Ahmmed Aoni, et al., “Localized surface plasmon resonance biosensor: An improved technique for SERS response intensification,” en, Opt. Lett., vol. 44, no. 5, pp. 1134–1137, Mar. 2019. [79] M. S. Islam, J. Sultana, A. A. Rifat, et al., “Dual-polarized highly sensitive plas monic sensor in the visible to near-IR spectrum,” en, Opt. Express, vol. 26, no. 23, p. 30 347, Nov. 2018. [80] S. Jain, K. Choudhary, A. Kumar, C. Marques, and S. Kumar, “(invited paper) PCF-based plasmonic sensor for the detection of cervical and skin cancer cell,” en, Results in Optics, vol. 14, no. 100589, p. 100 589, Feb. 2024. [81] M. H. K. Anik, S. M. R. Islam, H. Talukder, et al., “A highly sensitive quadruple d-shaped open channel photonic crystal fiber plasmonic sensor: A comparative study on materials effect,” en, Results Phys., vol. 23, no. 104050, p. 104 050, Apr. 2021. [82] M. Abdelghaffar, Y. Gamal, R. A. El-Khoribi, et al., “Highly sensitive v-shaped SPR PCF biosensor for cancer detection,” en, Opt. Quantum Electron., vol. 55, no. 5, May 2023. [83] S. Yao, Y. Yu, S. Qin, D. Wang, P. Yan, and Z. Zhang, “Research on optimization of magnetic field sensing characteristics of PCF sensor based on SPR,” en, Opt. Express, vol. 30, no. 10, pp. 16 405–16 418, May 2022. [84] A. M. T. Hoque, K. F. Al-Tabatabaie, M. E. Ali, A. M. Butt, S. S. I. Mitu, and K. K. Qureshi, “U-grooved selectively coated and highly sensitive PCF-SPR sen sor for broad range analyte RI detection,” IEEE Access, vol. 11, pp. 74 486– 74 499, 2023. [85] M. R. Islam, M. M. I. Khan, F. Mehjabin, et al., “Design of a dual spider-shaped surface plasmon resonance-based refractometric sensor with high amplitude sen sitivity,” en, IET Optoelectron., Nov. 2022. 94 Bibliography [86] J. Lv, M. Zhu, L. Yang, et al., “Surface plasmon resonance sensor based on the dual core d-shape photonic crystal fiber for refractive index detection in liquids,” Opt. Eng., vol. 61, no. 08, Aug. 2022. [87] Q. Zhang, W. Li, Q. Ren, J. Zheng, Q. Xie, and X. Wang, “A d-type dual side polished, highly sensitive, plasma refractive index sensor based on photonic crys tal fiber,” Front. Phys., vol. 10, Sep. 2022. [88] BAETE Admin. “BAETE.” [Accessed 16 Aug. 2024]. (2022), [Online]. Avail able: https://www.baetebangladesh.org/Archived-Manuals% 20-Guidelines.html | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/2330 | |
dc.description | Supervised by Prof. Dr. Mohammad Rakibul Islam, Head, EEE Department of Electrical and Electronic Engineering (EEE) Islamic University of Technology (IUT) Board Bazar, Gazipur, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2024 | en_US |
dc.description.abstract | Over the years, various designs for traditional photonic crystal fibers (PCFs) and surface plasmon resonance photonic crystal fibers (SPR-PCFs) have been proposed, each demonstrating different structures, sensitivities, and confinement losses. Building on a comprehensive review of previous studies, we present a photonic crystal fiber biosensor based on surface plasmon resonance (SPR) with outstanding performance characteristics, designed using COMSOL Multiphysics 6.1. In this study, we developed a sensor incorporating air holes of varying diameters, strategically positioned to optimize performance. By meticulously fine-tuning all fiber parameters, we achieved a maximum amplitude sensitivity (AS) of 965.976 RIU−1 and a wavelength sensitivity (WS) of 134,000 nm/RIU, with a maximum sensor resolution of 4 × 10−4 RIU for the x-polarization. For the y-polarization, we attained a maximum amplitude sensitivity (AS) of 1167.53 RIU−1 and a wavelength sensitivity (WS) of 125,000 nm/RIU, with a maximum sensor resolution of 5 × 10−4 RIU. Additionally, the sensor achieved a maximum figure of merit (FOM) of 832.422 for the x-polarization and 1246.986 for the y-polarizatio. The maximum birefringence observed was 1.980 × 10−3. The overall analyte sensing range is from refractive indices 1.35 to 1.42, and the sensor has a fabrication tolerance limit of ±5%. With its enhanced performance in terms of sensitivity, we believe that this SPR-based PCF biosensor can potentially contribute to the detection of unknown analytes and play a significant role in medical diagnostics. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Electrical and Elecrtonics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.subject | Surface Plasmon Resonance (SPR), Photonic Crystal Fiber (PCF), Refractive Index (RI), Confinement Loss (CL), Amplitude Sensitivity (AS) | en_US |
dc.title | Design and Optimization of High-Performance Surface Plasmon Resonance Based Photonic Crystal Fiber Biosensor for Enhanced Detection and Diverse Applications | en_US |
dc.type | Thesis | en_US |