Novel CMOS-Compatible Plasmonic Pressure Sensor with Silicon-Insulator-Silicon Waveguide Configuration

Show simple item record

dc.contributor.author Kabir, Mohammad Abrar
dc.contributor.author Keats, Aseer Imad
dc.contributor.author Taharat, Abdullah
dc.date.accessioned 2025-03-03T05:42:12Z
dc.date.available 2025-03-03T05:42:12Z
dc.date.issued 2024-06-25
dc.identifier.citation [1] Y. Fainman, L. Pang, B. Slutsky, J. Ptasinski, L. Feng, and M. Chen, “Optofluidic nano-plasmonics for biosensing,” in Optics in the Life Sciences. Optica Publishing Group, 2011, p. BMC1. [Online]. Available: https://opg.optica.org/abstract.cfm?URI= BODA-2011-BMC1 [2] S. J. T. University, “Enhancement of surface plasmon polariton excitation via feedback-based wavefront shaping,” December 8 2018. [Online]. Available: https://olab.physics.sjtu.edu.cn/website2018/news view english.php?nid=11860 [3] M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science, vol. 328, no. 5977, pp. 440–441, 4 2010. [Online]. Available: http://dx.doi.org/10.1126/science. 1186905 [4] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, vol. 424, no. 6950, pp. 824–830, 8 2003. [Online]. Available: http://dx.doi.org/10.1038/nature01937 [5] J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” Journal of Physics D: Applied Physics, vol. 45, no. 11, p. 113001, 2 2012. [Online]. Available: http://dx.doi.org/10.1088/0022-3727/45/11/113001 [6] Z. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Reports on Progress in Physics, vol. 76, no. 1, p. 016402, 12 2012. [Online]. Available: http://dx.doi.org/10.1088/0034-4885/76/1/016402 [7] D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photonics, vol. 4, no. 2, pp. 83–91, 1 2010. [Online]. Available: http://dx.doi.org/10.1038/nphoton.2009.282 [8] W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Physical Review Letters, vol. 92, no. 10, 3 2004. [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.92.107401 REFERENCES 65 [9] K. K. Mehta and R. J. Ram, “Precise and diffraction-limited waveguide-to-free-space focusing gratings,” Scientific Reports, vol. 7, no. 1, 5 2017. [Online]. Available: http://dx.doi.org/10.1038/s41598-017-02169-2 [10] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Physics Reports, vol. 408, no. 3-4, pp. 131–314, 3 2005. [Online]. Available: http://dx.doi.org/10.1016/j.physrep.2004.11.001 [11] L. Wang, Y.-P. Zeng, Z.-Y. Wang, X.-P. Xia, and Q.-Q. Liang, “A refractive index sensor based on an analogy t shaped metal–insulator–metal waveguide,” Optik, vol. 172, pp. 1199–1204, 11 2018. [Online]. Available: http://dx.doi.org/10.1016/j.ijleo. 2018.07.093 [12] N. Jankovic and N. Cselyuszka, “High-resolution plasmonic filter and refractive ´ index sensor based on perturbed square cavity with slits and orthogonal feeding scheme,” Plasmonics, vol. 14, no. 3, pp. 555–560, 8 2018. [Online]. Available: http://dx.doi.org/10.1007/s11468-018-0834-z [13] O. Abbaszadeh-Azar and K. Abedi, “A wavelength demultiplexing structure based on the multi-teeth-shaped plasmonic waveguide structure,” Plasmonics, vol. 15, no. 5, pp. 1403–1409, 4 2020. [Online]. Available: http://dx.doi.org/10.1007/ s11468-020-01149-z [14] A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Optics Express, vol. 14, no. 23, p. 11318, 11 2006. [Online]. Available: http://dx.doi.org/10.1364/OE.14.011318 [15] K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Optics Express, vol. 16, no. 26, p. 21793, 12 2008. [Online]. Available: http://dx.doi.org/10.1364/OE.16. 021793 [16] X. Gao, L. Zhou, X. Y. Yu, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband surface plasmonic y-splitter,” Optics Express, vol. 23, no. 18, p. 23270, 8 2015. [Online]. Available: http://dx.doi.org/10.1364/OE.23.023270 [17] M. F. Hassan, R. H. Sagor, I. Tathfif, K. S. Rashid, and M. Radoan, “An optimized dielectric-metal-dielectric refractive index nanosensor,” IEEE Sensors Journal, vol. 21, no. 2, pp. 1461–1469, 1 2021. [Online]. Available: http: //dx.doi.org/10.1109/JSEN.2020.3016570 [18] L. Chen, J. Xu, C. Gao, X. Zang, B. Cai, and Y. Zhu, “Manipulating terahertz electromagnetic induced transparency through parallel plate waveguide cavities,” Applied Physics Letters, vol. 103, no. 25, 12 2013. [Online]. Available: http://dx.doi.org/10.1063/1.4852115 REFERENCES 66 [19] L. Chen, C. Gao, J. Xu, X. Zang, B. Cai, and Y. Zhu, “Observation of electromagnetically induced transparency-like transmission in terahertz asymmetric waveguide-cavities systems,” Optics Letters, vol. 38, no. 9, p. 1379, 4 2013. [Online]. Available: http://dx.doi.org/10.1364/OL.38.001379 [20] Z. Zhang, L. Zhang, H. Li, and H. Chen, “Plasmon induced transparency in a surface plasmon polariton waveguide with a comb line slot and rectangle cavity,” Applied Physics Letters, vol. 104, no. 23, 6 2014. [Online]. Available: http://dx.doi.org/10.1063/1.4883647 [21] P. Magarshack and P. G. Paulin, “System-on-chip beyond the nanometer wall,” in Pro ceedings of the 40th Annual Design Automation Conference, 2003, pp. 419–424. [22] S. Upadhyay, V. L. Kalyani, and C. Charan, “Designing and optimization of nano-ring resonator-based photonic pressure sensor,” in Advances in Intelligent Systems and Computing. Springer Singapore, 2016, pp. 269–278. [Online]. Available: http://dx.doi.org/10.1007/978-981-10-0129-1 29 [23] I. Tathfif, A. A. Yaseer, K. S. Rashid, and R. H. Sagor, “Metal-insulator metal waveguide-based optical pressure sensor embedded with arrays of silver nanorods,” Optics Express, vol. 29, no. 20, p. 32365, 9 2021. [Online]. Available: http://dx.doi.org/10.1364/OE.439974 [24] X. Ma, T. Li, Y. Wang, and Z. Chen, “Baffle induced sensing enhancement for pressure and refractive index based on fano resonance,” Plasmonics, 3 2024. [Online]. Available: http://dx.doi.org/10.1007/s11468-024-02262-z [25] J. Wu, P. Lang, X. Chen, and R. Zhang, “A novel optical pressure sensor based on surface plasmon polariton resonator,” Journal of Modern Optics, vol. 63, no. 3, pp. 219–223, 8 2015. [Online]. Available: http://dx.doi.org/10.1080/09500340.2015. 1073806 [26] G. Duan, P. Lang, L. Wang, L. Yu, and J. Xiao, “An optical pressure sensor based on π-shaped surface plasmon polariton resonator,” Modern Physics Letters B, vol. 30, no. 21, p. 1650284, 8 2016. [Online]. Available: http: //dx.doi.org/10.1142/S0217984916502845 [27] P. Palizvan, S. Olyaee, and M. Seifouri, “An optical mim pressure sensor based on a double square ring resonator,” Photonic Sensors, vol. 8, no. 3, pp. 242–247, 6 2018. [Online]. Available: http://dx.doi.org/10.1007/s13320-018-0491-z [28] M. Mansouri, A. Mir, A. Farmani, and M. Izadi, “Numerical modeling of an integrable and tunable plasmonic pressure sensor with nanostructure REFERENCES 67 grating,” Plasmonics, vol. 16, no. 1, pp. 27–36, 8 2020. [Online]. Available: http://dx.doi.org/10.1007/s11468-020-01242-3 [29] X. Zhang, H. Tian, Y. Liu, and J. Song, “Pressure and temperature dual-parameter optical sensor based on the mim waveguide structure coupled with two t-shaped cavities,” Applied Optics, vol. 62, no. 25, p. 6771, 8 2023. [Online]. Available: http://dx.doi.org/10.1364/AO.499688 [30] Z. Chen, X. Ma, S. Zhang, T. Li, Y. Wang, and Z.-L. Hou, “Pressure sensor based on optical resonator in a compact plasmonic system,” IEEE Sensors Journal, vol. 24, no. 4, pp. 4418–4423, 2 2024. [Online]. Available: http://dx.doi.org/10.1109/JSEN.2023.3348534 [31] F. Chen and W. X. Yang, “Pressure sensor based on multiple fano resonance in metal–insulator–metal waveguide coupled resonator structure,” Journal of the Optical Society of America B, vol. 39, no. 7, p. 1716, 6 2022. [Online]. Available: http://dx.doi.org/10.1364/JOSAB.461472 [32] R. Al Mahmud, M. O. Faruque, and R. H. Sagor, “A highly sensitive plasmonic refractive index sensor based on triangular resonator,” Optics Communications, vol. 483, p. 126634, 3 2021. [Online]. Available: http://dx.doi.org/10.1016/j.optcom.2020. 126634 [33] M. F. Hassan, R. H. Sagor, M. R. Amin, M. R. Islam, and M. S. Alam, “Point of care detection of blood electrolytes and glucose utilizing nano-dot enhanced plasmonic biosensor,” IEEE Sensors Journal, vol. 21, no. 16, pp. 17 749–17 757, 8 2021. [Online]. Available: http://dx.doi.org/10.1109/JSEN.2021.3082756 [34] F. Hu, H. Yi, and Z. Zhou, “Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities,” Optics Express, vol. 19, no. 6, p. 4848, 2 2011. [Online]. Available: http://dx.doi.org/10.1364/OE.19.004848 [35] J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bulletin, vol. 37, no. 8, pp. 768–779, 8 2012. [Online]. Available: http://dx.doi.org/10.1557/mrs.2012.173 [36] W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nature Photonics, vol. 1, no. 4, pp. 224–227, 4 2007. [Online]. Available: http://dx.doi.org/10.1038/nphoton.2007.28 [37] Y. Yagil and G. Deutscher, “Transmittance of thin metal films near the percolation threshold,” Thin Solid Films, vol. 152, no. 3, pp. 465–471, 9 1987. [Online]. Available: http://dx.doi.org/10.1016/0040-6090(87)90262-8 REFERENCES 68 [38] F. Abeles, Y. Borensztein, and T. L ` opez-Rios, ´ Optical properties of discontinuous thin films and rough surfaces of silver. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984, pp. 93–117. [Online]. Available: https://doi.org/10.1007/BFb0107447 [39] K. Fuchs, “The conductivity of thin metallic films according to the electron theory of metals,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 34, no. 1, pp. 100–108, 1 1938. [Online]. Available: http: //dx.doi.org/10.1017/S0305004100019952 [40] F. Warkusz, “Electrical and mechanical properties of thin metal films: Size effects,” Progress in Surface Science, vol. 10, no. 3, pp. 287–382, 1 1980. [Online]. Available: http://dx.doi.org/10.1016/0079-6816(80)90003-9 [41] M. O. Faruque, R. Al Mahmud, and R. H. Sagor, “Highly sensitive plasmonic refractive index sensor using doped silicon: an alternative to mim structures,” Plasmonics, vol. 17, no. 1, pp. 203–211, 8 2021. [Online]. Available: http: //dx.doi.org/10.1007/s11468-021-01516-4 [42] E. Kretschmann, “Decay of non radiative surface plasmons into light on rough silver films. comparison of experimental and theoretical results,” Optics Communications, vol. 6, no. 2, pp. 185–187, 10 1972. [Online]. Available: http://dx.doi.org/10.1016/0030-4018(72)90224-6 [43] D.-L. Hornauer, “Light scattering experiments on silver films of different roughness using surface plasmon excitation,” Optics Communications, vol. 16, no. 1, pp. 76–79, 1 1976. [Online]. Available: http://dx.doi.org/10.1016/0030-4018(76)90054-7 [44] Y.-H. Chou, C.-J. Chang, T.-R. Lin, and T.-C. Lu, “Surface plasmon polariton nanolasers: Coherent light sources for new applications,” Chinese Physics B, vol. 27, no. 11, p. 114208, 11 2018. [Online]. Available: http://dx.doi.org/10.1088/1674-1056/ 27/11/114208 [45] G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Letters, vol. 7, no. 7, pp. 1947–1952, 6 2007. [Online]. Available: http://dx.doi.org/10.1021/nl070648a [46] V. J. Keast, T. A. Myles, N. Shahcheraghi, and M. B. Cortie, “Corrosion processes of triangular silver nanoparticles compared to bulk silver,” Journal of Nanoparticle Research, vol. 18, no. 2, 2 2016. [Online]. Available: http: //dx.doi.org/10.1007/s11051-016-3354-9 REFERENCES 69 [47] H. E. Bennett, R. L. Peck, D. K. Burge, and J. M. Bennett, “Formation and growth of tarnish on evaporated silver films,” Journal of Applied Physics, vol. 40, no. 8, pp. 3351–3360, 7 1969. [Online]. Available: http://dx.doi.org/10.1063/1.1658187 [48] G. Bemski, “Recombination properties of gold in silicon,” Physical Review, vol. 111, no. 6, pp. 1515–1518, 9 1958. [Online]. Available: http://dx.doi.org/10.1103/PhysRev. 111.1515 [49] M. O. Faruque, R. Al Mahmud, and R. H. Sagor, “Heavily doped silicon: A potential replacement of conventional plasmonic metals,” Journal of Semiconductors, vol. 42, no. 6, p. 062302, 6 2021. [Online]. Available: http://dx.doi.org/10.1088/1674-4926/ 42/6/062302 [50] Y. Zoo, D. Adams, J. Mayer, and T. Alford, “Investigation of coefficient of thermal expansion of silver thin film on different substrates using x-ray diffraction,” Thin Solid Films, vol. 513, no. 1-2, pp. 170–174, 8 2006. [Online]. Available: http://dx.doi.org/10.1016/j.tsf.2006.02.005 [51] Y. Okada and Y. Tokumaru, “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 k,” Journal of Applied Physics, vol. 56, no. 2, pp. 314–320, 7 1984. [Online]. Available: http://dx.doi.org/10.1063/1.333965 [52] G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Advanced Materials, vol. 25, no. 24, pp. 3264–3294, 5 2013. [Online]. Available: http://dx.doi.org/10.1002/adma.201205076 [53] A. D. Rakic, A. B. Djuri ´ siˇ c, J. M. Elazar, and M. L. Majewski, “Optical properties ´ of metallic films for vertical-cavity optoelectronic devices,” Applied Optics, vol. 37, no. 22, p. 5271, 8 1998. [Online]. Available: http://dx.doi.org/10.1364/AO.37.005271 [54] S. A. Maier, Plasmonics: Fundamentals and Applications. Springer US, 2007. [Online]. Available: http://dx.doi.org/10.1007/0-387-37825-1 [55] M. G. Saber, N. Abad´ıa, and D. V. Plant, “Cmos compatible all-silicon tm pass polarizer based on highly doped silicon waveguide,” Optics Express, vol. 26, no. 16, p. 20878, 7 2018. [Online]. Available: http://dx.doi.org/10.1364/OE.26.020878 [56] Y. B. Chen and Z. M. Zhang, “Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces,” Journal of Physics D: Applied Physics, vol. 41, no. 9, p. 095406, 4 2008. [Online]. Available: http: //dx.doi.org/10.1088/0022-3727/41/9/095406 REFERENCES 70 [57] M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” Journal of Physics: Condensed Matter, vol. 22, no. 14, p. 143201, 3 2010. [Online]. Available: http://dx.doi.org/10.1088/0953-8984/22/14/143201 [58] D. Nobili, S. Solmi, A. Parisini, M. Derdour, A. Armigliato, and L. Moro, “Precipitation, aggregation, and diffusion in heavily arsenic-doped silicon,” Physical Review B, vol. 49, no. 4, pp. 2477–2483, 1 1994. [Online]. Available: http://dx.doi.org/10.1103/PhysRevB.49.2477 [59] W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” Journal of Optics A: Pure and Applied Optics, vol. 8, no. 4, pp. S87–S93, 3 2006. [Online]. Available: http://dx.doi.org/10.1088/1464-4258/8/4/S06 [60] M. N. Sadiku, Numerical Techniques in Electromagnetics with MATLAB®. CRC Press, 9 2015. [Online]. Available: http://dx.doi.org/10.1201/9781315222622 [61] H. Wang, J. Yang, J. Zhang, J. Huang, W. Wu, D. Chen, and G. Xiao, “Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth shaped structure,” Optics Letters, vol. 41, no. 6, p. 1233, 3 2016. [Online]. Available: http://dx.doi.org/10.1364/OL.41.001233 [62] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, “What is the young’s modulus of silicon?” Journal of Microelectromechanical Systems, vol. 19, no. 2, pp. 229–238, 4 2010. [Online]. Available: http://dx.doi.org/10.1109/JMEMS.2009.2039697 [63] R. Al Mahmud, M. O. Faruque, and R. H. Sagor, “Plasmonic refractive index sensor based on ring-type pentagonal resonator with high sensitivity,” Plasmonics, vol. 16, no. 3, pp. 873–880, 1 2021. [Online]. Available: http: //dx.doi.org/10.1007/s11468-020-01357-7 [64] Y.-F. Chou Chau, J.-C. Jiang, C.-T. Chou Chao, H.-P. Chiang, and C. M. Lim, “Manipulating near field enhancement and optical spectrum in a pair-array of the cavity resonance based plasmonic nanoantennas,” Journal of Physics D: Applied Physics, vol. 49, no. 47, p. 475102, 11 2016. [Online]. Available: http://dx.doi.org/10.1088/0022-3727/49/47/475102 [65] Y.-F. Chou Chau, C.-T. Chou Chao, J.-Y. Rao, H.-P. Chiang, C. M. Lim, R. C. Lim, and N. Y. Voo, “Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities,” Nanoscale Research Letters, vol. 11, no. 1, 9 2016. [Online]. Available: http://dx.doi.org/10.1186/s11671-016-1636-x REFERENCES 71 [66] Y.-F. Chou Chau, T. Y. Ming, C.-T. Chou Chao, R. Thotagamuge, M. R. R. Kooh, H. J. Huang, C. M. Lim, and H.-P. Chiang, “Significantly enhanced coupling effect and gap plasmon resonance in a mim-cavity based sensing structure,” Scientific Reports, vol. 11, no. 1, 9 2021. [Online]. Available: http://dx.doi.org/10.1038/s41598-021-98001-z [67] R. A. Silva, C. M. Buiatti, S. L. Cruz, and J. A. Pereira, “Pressure wave behaviour and leak detection in pipelines,” Computers & chemical engineering, vol. 20, pp. S491– S496, 1996. [68] L. Liang, K. Feng, G. Xu, Z. Zhu, and X. Zhou, “Pipeline leakage test based on fbg pressure sensor,” IOP Conference Series: Earth and Environmental Science, vol. 170, p. 022049, 7 2018. [Online]. Available: http://dx.doi.org/10.1088/1755-1315/170/2/ 022049 [69] X. Fang, X. Yue, W. An, and X. Feng, “Experimental study of gas flow characteristics in micro-/nano-pores in tight and shale reservoirs using microtubes under high pressure and low pressure gradients,” Microfluidics and Nanofluidics, vol. 23, no. 1, 12 2018. [Online]. Available: http://dx.doi.org/10.1007/s10404-018-2175-9 [70] M. Farman, Surendra, R. Prajesh, A. K. Upadhyay, P. Kumar, and E. Thouti, “All-polydimethylsiloxane-based highly flexible and stable capacitive pressure sensors with engineered interfaces for conformable electronic skin,” ACS Applied Materials & Interfaces, vol. 15, no. 28, pp. 34 195–34 205, 7 2023. [Online]. Available: http://dx.doi.org/10.1021/acsami.3c04227 [71] J. Guo, C. Shang, S. Gao, Y. Zhang, B. Fu, and L. Xu, “Flexible plasmonic optical tactile sensor for health monitoring and artificial haptic perception,” Advanced Materials Technologies, vol. 8, no. 7, 1 2023. [Online]. Available: http://dx.doi.org/10.1002/admt.202201506 [72] K. Xu, Y. Lu, and K. Takei, “Multifunctional skin-inspired flexible sensor systems for wearable electronics,” Advanced Materials Technologies, vol. 4, no. 3, 1 2019. [Online]. Available: http://dx.doi.org/10.1002/admt.201800628 [73] J. G. Wilde and W. K. Metcalf, “Changes in the lymphocyte cytoplasmic refractive in dex following typhoid vaccination,” Annals of Clinical and Laboratory Science, vol. 5, no. 1, pp. 23–26, 1975 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2336
dc.description Supervised by Dr. Rakibul Hasan Sagor, Professor, Department of Electrical and Electronic Engineering (EEE) Islamic University of Technology (IUT) Board Bazar, Gazipur, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2024 en_US
dc.description.abstract This thesis introduces a novel CMOS-compatible plasmonic optical pressure sensor featuring a Silicon-Insulator-Silicon waveguide configuration. The sensor design incorporates a Railtrack resonator coupled to a straight waveguide with gratings, further enhanced by embedding silicon nanorods into the resonator cavity. This sensor demonstrates a notable redshift in the transmission spectrum related to the deformation of the resonator structure under applied pressure. The proposed sensor exhibits an unprecedented pressure sensitivity of 51.075 nm/MPa, arguably the highest value reported to date for Metal-Insulator-Metal based pressure sensors. Moreover, this work represents a novel instance of employing CMOScompatible silicon for designing an optical pressure sensor, thereby bridging the gap between plasmonic optomechanical sensors and nanoelectronics, while circumventing the compatibility issues typically associated with metals in standard CMOS fabrication processes. While traditional metals suffer from limited tunability due to their inherent carrier concentration constraints, silicon offers a promising solution as its optical properties can be finely tuned by modifying the doping levels, addressing the challenge of optical tunability. The sensor’s versatility and impact across diverse domains are highlighted by its potential applications, including gas leakage detection, flow rate measurement, electronic skin sensing, and pressure sensors as refractive index sensors for early diagnosis of organ rejection post-transplantation. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Elecrtonics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.subject Optomechanical sensor, Surface plasmon polaritons, Plasmonics, Pressure sensor, RI sensor en_US
dc.title Novel CMOS-Compatible Plasmonic Pressure Sensor with Silicon-Insulator-Silicon Waveguide Configuration en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics