dc.identifier.citation |
[1] A. Fernández, S. García, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera, “Learning from Imbalanced Data Sets,” Learning from Imbalanced Data Sets, 2018, doi: 10.1007/978-3-319-98074-4. [2] M. Dudjak and G. Martinović, “An empirical study of data intrinsic characteristics that make learning from imbalanced data difficult,” Expert Syst Appl, vol. 182, p. 115297, Nov. 2021, doi: 10.1016/J.ESWA.2021.115297. [3] H. Y. J. Kang, E. Batbaatar, D. W. Choi, K. S. Choi, M. Ko, and K. S. Ryu, “Synthetic Tabular Data Based on Generative Adversarial Networks in Health Care: Generation and Validation Using the Divide-and Conquer Strategy,” JMIR Med Inform, vol. 11, no. 1, Jan. 2023, doi: 10.2196/47859. [4] P. Vuttipittayamongkol, E. Elyan, and A. Petrovski, “On the class overlap problem in imbalanced data classification,” Knowl Based Syst, vol. 212, p. 106631, Jan. 2021, doi: 10.1016/J.KNOSYS.2020.106631. [5] V. García, R. A. Mollineda, and J. S. Sánchez, “On the k-NN performance in a challenging scenario of imbalance and overlapping,” Pattern Analysis and Applications, vol. 11, no. 3–4, pp. 269–280, Sep. 2008, doi: 10.1007/S10044-007-0087-5/FIGURES/7. [6] G. Haixiang, L. Yijing, J. Shang, G. Mingyun, H. Yuanyue, and G. Bing, “Learning from class-imbalanced data: Review of methods and applications,” Expert Syst Appl, vol. 73, pp. 220–239, May 2017, doi: 10.1016/J.ESWA.2016.12.035. [7] R. Mohammed, J. Rawashdeh, and M. Abdullah, “Machine Learning with Oversampling and Undersampling Techniques: Overview Study and Experimental Results,” 2020 11th International Conference on Information and Communication Systems, ICICS 2020, pp. 243–248, Apr. 2020, doi: 10.1109/ICICS49469.2020.239556. [8] A. Fernández, S. García, F. Herrera, and N. V. Chawla, “SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary,” Journal of Artificial Intelligence Research, vol. 61, pp. 863–905, Apr. 2018, doi: 10.1613/JAIR.1.11192. [9] A. Newaz, M. S. Mohosheu, and M. A. Al Noman, “Predicting complications of myocardial infarction within several hours of hospitalization using data mining techniques,” Inform Med Unlocked, vol. 42, p. 101361, Jan. 2023, doi: 10.1016/J.IMU.2023.101361. [10] J. F. Díez-Pastor, J. J. Rodríguez, C. García-Osorio, and L. I. Kuncheva, “Random Balance: Ensembles of variable priors classifiers for imbalanced data,” Knowl Based Syst, vol. 85, pp. 96–111, Sep. 2015, doi: 10.1016/J.KNOSYS.2015.04.022. [11] H. J. Kim, N. O. Jo, and K. S. Shin, “Optimization of cluster-based evolutionary undersampling for the artificial neural networks in corporate bankruptcy prediction,” Expert Syst Appl, vol. 59, pp. 226–234, Oct. 2016, doi: 10.1016/J.ESWA.2016.04.027. [12] G. Kovács, “Smote-variants: A python implementation of 85 minority oversampling techniques,” Neurocomputing, vol. 366, pp. 352–354, Nov. 2019, doi: 10.1016/J.NEUCOM.2019.06.100. [13] A. S. Tarawneh, A. B. Hassanat, G. A. Altarawneh, and A. Almuhaimeed, “Stop Oversampling for Class Imbalance Learning: A Review,” IEEE Access, vol. 10, pp. 47643–47660, 2022, doi: 10.1109/ACCESS.2022.3169512. 62 | P a g e [14] Z. Xu, D. Shen, T. Nie, and Y. Kou, “A hybrid sampling algorithm combining M-SMOTE and ENN based on Random forest for medical imbalanced data,” J Biomed Inform, vol. 107, p. 103465, Jul. 2020, doi: 10.1016/J.JBI.2020.103465. [15] A. Newaz, S. Hassan, F. Shahriyar Haq, and C. Author, “An Empirical Analysis of the Efficacy of Different Sampling Techniques for Imbalanced Classification,” Aug. 2022, Accessed: Mar. 15, 2024. [Online]. Available: https://arxiv.org/abs/2208.11852v1 [16] J. J. Rodríguez, J. F. Díez-Pastor, Á. Arnaiz-González, and L. I. Kuncheva, “Random Balance ensembles for multiclass imbalance learning,” Knowl Based Syst, vol. 193, p. 105434, Apr. 2020, doi: 10.1016/J.KNOSYS.2019.105434. [17] V. H. Alves Ribeiro and G. Reynoso-Meza, “Ensemble learning by means of a multi-objective optimization design approach for dealing with imbalanced data sets,” Expert Syst Appl, vol. 147, p. 113232, Jun. 2020, doi: 10.1016/J.ESWA.2020.113232. [18] K. Yang et al., “Hybrid Classifier Ensemble for Imbalanced Data,” IEEE Trans Neural Netw Learn Syst, vol. 31, no. 4, pp. 1387–1400, Apr. 2020, doi: 10.1109/TNNLS.2019.2920246. [19] A. Anaissi, P. J. Kennedy, M. Goyal, and D. R. Catchpoole, “A balanced iterative random forest for gene selection from microarray data,” BMC Bioinformatics, vol. 14, no. 1, pp. 1–10, Aug. 2013, doi: 10.1186/1471-2105-14-261/TABLES/4. [20] R. Blagus and L. Lusa, “SMOTE for high-dimensional class-imbalanced data,” BMC Bioinformatics, vol. 14, no. 1, pp. 1–16, Mar. 2013, doi: 10.1186/1471-2105-14-106/FIGURES/7. [21] G. Kovács, “An empirical comparison and evaluation of minority oversampling techniques on a large number of imbalanced datasets,” Appl Soft Comput, vol. 83, p. 105662, Oct. 2019, doi: 10.1016/J.ASOC.2019.105662. [22] H. Nugroho, K. Wikantika, S. Bijaksana, and A. Saepuloh, “Handling imbalanced data in supervised machine learning for lithological mapping using remote sensing and airborne geophysical data,” Open Geosciences, vol. 15, no. 1, Jan. 2023, doi: 10.1515/GEO-2022- 0487/DOWNLOADASSET/SUPPL/S2A_MSIL2A_20190109T011721_N0211_R088_T53MPR_20190109 T032340.ZIP. [23] R. C. Prati, G. E. A. P. A. Batista, and D. F. Silva, “Class imbalance revisited,” Knowl Inf Syst, vol. 45, no. 1, pp. 247–270, Oct. 2015, doi: 10.1007/S10115-014-0794-3. [24] A. N. Tarekegn, M. Giacobini, and K. Michalak, “A review of methods for imbalanced multi-label classification,” Pattern Recognit, vol. 118, p. 107965, Oct. 2021, doi: 10.1016/J.PATCOG.2021.107965. [25] “Myocardial infarction complications - UCI Machine Learning Repository.” Accessed: Jul. 14, 2023. [Online]. Available: https://archive.ics.uci.edu/dataset/579/myocardial+infarction+complications [26] J. Alcalá-Fdez et al., “KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework,” vol. 17, pp. 255–287, 2011, Accessed: Mar. 15, 2024. [Online]. Available: http://the-data-mine.com/bin/view/Softwar |
en_US |