Investigation on Mapping Highly Sensitive and Tunable Hollow Core Photonic Crystal Fiber Facilitated With Ultra-Short Pulse for Multipurpose Applications

Show simple item record

dc.contributor.author Nafiz, Abdullah Al Mahmud
dc.contributor.author Protiva, Afra Anika
dc.contributor.author Tamim, Mohammad
dc.date.accessioned 2025-03-03T06:25:18Z
dc.date.available 2025-03-03T06:25:18Z
dc.date.issued 2024-06-25
dc.identifier.citation [1] I. S. Amiri et al., “Introduction to photonics: Principles and the most recent applications of microstructures,” Micromachines, vol. 9, no. 9. MDPI AG, 2018. doi: 10.3390/mi9090452. [2] K. Amsalu and S. Palani, “A review on photonics and its applications,” Mater Today Proc, vol. 33, pp. 3372–3377, 2020, doi: https://doi.org/10.1016/j.matpr.2020.05.184. [3] G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Advanced Materials, vol. 25, no. 24. pp. 3264–3294, Jun. 25, 2013. doi: 10.1002/adma.201205076. [4] “newport.com/t/fiber-optic-basics.” [5] J. C. Knight, “Photonic crystal fibres,” Nature, vol. 424, no. 6950, pp. 847–851, 2003, doi: 10.1038/nature01940. [6] P. S. J. Russell, “14 - Photonic crystal fibers: Basics and applications,” in Optical Fiber Telecommunications V A (Fifth Edition), I. P. Kaminow, T. Li, and A. E. Willner, Eds., Burlington: Academic Press, 2008, pp. 485–522. doi: https://doi.org/10.1016/B978-0- 12-374171-4.00014-9. [7] B. Debord, F. Amrani, L. Vincetti, F. Gérôme, and F. Benabid, “Hollow-core fiber technology: The rising of ‘gas photonics,’” Fibers, vol. 7, no. 2. MDPI Multidisciplinary Digital Publishing Institute, 2019. doi: 10.3390/FIB7020016. [8] K. Borzycki and T. Osuch, “Hollow-Core Optical Fibers for Telecommunications and Data Transmission,” Applied Sciences (Switzerland), vol. 13, no. 19. Multidisciplinary Digital Publishing Institute (MDPI), Oct. 01, 2023. doi: 10.3390/app131910699. [9] J. F. Algorri, D. C. Zografopoulos, A. Tapetado, D. Poudereux, and J. M. Sánchez-Pena, “Infiltrated photonic crystal fibers for sensing applications,” Sensors (Switzerland), vol. 18, no. 12. MDPI AG, Dec. 01, 2018. doi: 10.3390/s18124263. [10] M. DiDomenico Jr., J. E. Geusic, H. M. Marcos, and R. G. Smith, “GENERATION OF ULTRASHORT OPTICAL PULSES BY MODE LOCKING THE YAIG: Nd LASER,” Appl Phys Lett, vol. 8, no. 7, pp. 180–183, Apr. 1966, doi: 10.1063/1.1754544. [11] Y. Han, Y. Guo, B. Gao, C. Ma, R. Zhang, and H. Zhang, “Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers,” Prog Quantum Electron, vol. 71, p. 100264, 2020, doi: https://doi.org/10.1016/j.pquantelec.2020.100264. 75 [12] K. Jiang et al., “A review of ultra-short pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN,” Mater Sci Semicond Process, vol. 180, p. 108559, 2024, doi: https://doi.org/10.1016/j.mssp.2024.108559. [13] R. E. Samad, L. C. Courrol, S. Licia Baldochi, N. Dias, and V. Junior, “Ultrashort Laser Pulses Applications.” [Online]. Available: www.intechopen.com [14] R. Japan. Molecular Spectroscopy Tahara group, “Ultrashort pulse generation and multi color time-resolved spectrometers.” [15] A. Al Sheakh and A. A. prof Anwaar Al Dergazly, “Simulation of Hexagonal HC-PCF With Circular Holes using COMSOL Multiphysics Software,” 2022. [16] M. A. Habib, M. S. Anower, L. F. Abdulrazak, and M. S. Reza, “Hollow core photonic crystal fiber for chemical identification in terahertz regime,” Optical Fiber Technology, vol. 52, Nov. 2019, doi: 10.1016/j.yofte.2019.101933. [17] A. A.-M. Bulbul, E. Podder, S. Biswas, and Md. B. Hossain, “Modelling and numerical analysis of a fabrication-friendly PCF-based biosensor: Milk sensing,” Sens Biosensing Res, vol. 35, p. 100471, 2022, doi: https://doi.org/10.1016/j.sbsr.2021.100471. [18] M. M. A. Eid, M. A. Habib, M. S. Anower, and A. N. Z. Rashed, “Hollow Core Photonic Crystal Fiber (PCF)–Based Optical Sensor for Blood Component Detection in Terahertz Spectrum,” Brazilian Journal of Physics, vol. 51, no. 4, pp. 1017–1025, Aug. 2021, doi: 10.1007/s13538-021-00906-7. [19] M. A. Habib, M. S. Anower, L. F. Abdulrazak, and M. S. Reza, “Hollow core photonic crystal fiber for chemical identification in terahertz regime,” Optical Fiber Technology, vol. 52, Nov. 2019, doi: 10.1016/j.yofte.2019.101933. [20] P. J. Mosley, W. C. Huang, M. G. Welch, B. J. Mangan, W. J. Wadsworth, and J. C. Knight, “Ultrashort pulse compression and delivery in a hollow-core photonic crystal fiber at 540 nm wavelength,” 2010. [21] M. Khelladi, “Study and Synthesis of the Propagation of Ultrashort Laser Pulses in Medias: Fused Silica, Photonic Crystal Fiber, Air Silica and Hollow Core,” 2022, doi: 10.21203/rs.3.rs-2165945/v1. [22] D. K. Kalluri, “Principles of Electromagnetic Waves and Materials.” [23] P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics. Cambridge: Cambridge University Press, 1990. doi: DOI: 10.1017/CBO9781139167994. [24] C. Li, Nonlinear optics: Principles and applications. Springer Singapore, 2016. doi: 10.1007/978-981-10-1488-8. 76 [25] G. P. Agrawal, “Group-velocity dispersion,” in Nonlinear Fiber Optics, Elsevier, 2019, pp. 57–84. doi: 10.1016/b978-0-12-817042-7.00010-5. [26] F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” 2008. [27] “Front Matter,” in Nonlinear Fiber Optics, Elsevier, 2013, pp. i–ii. doi: 10.1016/b978- 0-12-397023-7.00018-8. [28] G. P. Agrawal, “Chapter 2 - WAVE PROPAGATION IN OPTICAL FIBERS,” in Nonlinear Fiber Optics (Second Edition), G. P. Agrawal, Ed., Boston: Academic Press, 1995, pp. 28–59. doi: https://doi.org/10.1016/B978-0-12-045142-5.50008-8. [29] M. M. A. Eid, M. A. Habib, M. S. Anower, and A. N. Z. Rashed, “Hollow Core Photonic Crystal Fiber (PCF)–Based Optical Sensor for Blood Component Detection in Terahertz Spectrum,” Brazilian Journal of Physics, vol. 51, no. 4, pp. 1017–1025, Aug. 2021, doi: 10.1007/s13538-021-00906-7. [30] T. Sato, S. Makino, Y. Ishizaka, T. Fujisawa, and K. Saitoh, “Nonlinear optics; (190.3270) Kerr effect; (130.5296) Photonic crystal waveguides,” 2015, doi: 10.1364/AO.99.099999. [31] G. P. Agrawal, “Chapter 4 - Self-phase modulation,” in Nonlinear Fiber Optics (Sixth Edition), G. P. Agrawal, Ed., Academic Press, 2019, pp. 85–125. doi: https://doi.org/10.1016/B978-0-12-817042-7.00011-7. [32] T. R. Taha and M. I. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation,” J Comput Phys, vol. 55, no. 2, pp. 203–230, 1984, doi: https://doi.org/10.1016/0021-9991(84)90003-2. [33] 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. [34] Bangladesh University of Engineering and Technology. Department of Electrical and Electronic Engineering, IEEE Communications Society. Bangladesh Chapter, and Institute of Electrical and Electronics Engineers, 3rd IEEE International Conference on Telecommunications and Photonics (ICTP) : 28-30 December 2019, Dhaka, Bangladesh, Dept. of EEE, ECE Building, BUET, Dhaka, Bangladesh. [35] B. Wan, L. Zhu, X. Ma, T. Li, and J. Zhang, “Characteristic analysis and structural design of hollow-core photonic crystal fibers with band gap cladding structures,” Sensors (Switzerland), vol. 21, no. 1, pp. 1–18, Jan. 2021, doi: 10.3390/s21010284. 77 [36] M. M. Hasan, T. Pandey, and M. A. Habib, “Highly sensitive hollow-core fiber for spectroscopic sensing applications,” Sens Biosensing Res, vol. 34, Dec. 2021, doi: 10.1016/j.sbsr.2021.100456. [37] G. P. Agrawal, “Group-velocity dispersion,” in Nonlinear Fiber Optics, Elsevier, 2019, pp. 57–84. doi: 10.1016/b978-0-12-817042-7.00010-5. [38] G. P. Agrawal, “Chapter 2 - Pulse propagation in fibers,” in Nonlinear Fiber Optics (Sixth Edition), G. P. Agrawal, Ed., Academic Press, 2019, pp. 27–55. doi: https://doi.org/10.1016/B978-0-12-817042-7.00009-9. [39] T. Sato, S. Makino, Y. Ishizaka, T. Fujisawa, and K. Saitoh, “A rigorous definition of nonlinear parameter γ and effective area A_eff for photonic crystal optical waveguides,” Journal of the Optical Society of America B, vol. 32, no. 6, p. 1245, Jun. 2015, doi: 10.1364/josab.32.001245. [40] G. Mcconnell and E. Riis, “Ultra-short pulse compression using photonic crystal fibre,” Appl Phys B, vol. 78, no. 5, pp. 557–563, Mar. 2004, doi: 10.1007/s00340-004-1412-y. [41] M. Y. Hamza and S. Tariq3, “Split Step Fourier Method Based Pulse Propagation Model for Nonlinear Fiber Optics.” [42] A. Boretti, “Advantages and Disadvantages of Diesel Single and Dual-Fuel Engines,” Frontiers in Mechanical Engineering, vol. 5. Frontiers Media S.A., Dec. 03, 2019. doi: 10.3389/fmech.2019.00064. [43] T. M. I. Mahlia, J. Y. Lim, L. Aditya, T. M. I. Riayatsyah, A. E. Pg Abas, and Nasruddin, “Methodology for implementing power plant efficiency standards for power generation: potential emission reduction,” Clean Technol Environ Policy, vol. 20, no. 2, pp. 309– 327, Mar. 2018, doi: 10.1007/s10098-017-1473-3. [44] A. A. M. Bulbul, A. N. Z. Rashed, H. M. El-Hageen, and A. M. Alatwi, “Design and numerical analysis of an extremely sensitive PCF-based sensor for detecting kerosene adulteration in petrol and diesel,” Alexandria Engineering Journal, vol. 60, no. 6, pp. 5419–5430, Dec. 2021, doi: 10.1016/j.aej.2021.04.041. [45] A. Sadat, “Determining the Adulteration of Diesel by an Optical Method,” 2014. [Online]. Available: www.ijcaonline.org [46] M. Shahru Bahari, W. J. Criddle, and J. D. R. Thomas, “Determination of the Adulteration of Petrol With Kerosine Using a Rapid Phase-titration Procedure,” 1990. [47] A. K. Gupta and R. K. Sharma, “A new method for estimation of automobile fuel adulteration 357 X A new method for estimation of automobile fuel adulteration.” [Online]. Available: www.intechopen.com 78 [48] I. K. Yakasai, P. E. Abas, and F. Begum, “Proposal of novel photonic crystal fibre for sensing adulterated petrol and diesel with kerosene in terahertz frequencies,” IET Optoelectronics, vol. 14, no. 5, pp. 319–326, Oct. 2020, doi: 10.1049/iet-opt.2019.0141. [49] B. Kim, H. M. Kim, K. Naeem, L. Cui, Y. Chung, and T. H. Kim, “Design, fabrication, and sensor applications of photonic crystal fibers,” Journal of the Korean Physical Society, vol. 57, no. 61, pp. 1937–1941, Dec. 2010, doi: 10.3938/jkps.57.1937. [50] G. P. Agrawal, “Chapter 1 - Introduction,” in Nonlinear Fiber Optics (Sixth Edition), G. P. Agrawal, Ed., Academic Press, 2019, pp. 1–25. doi: https://doi.org/10.1016/B978-0- 12-817042-7.00008-7. [51] S. R. Nagel, J. B. MacChesney, and K. L. Walker, “1 - MODIFIED CHEMICAL VAPOR DEPOSITION,” in Optical Fiber Communications, T. LI, Ed., Academic Press, 1985, pp. 1–64. doi: https://doi.org/10.1016/B978-0-12-447301-0.50005-2. [52] F. P. Kapron, “Transmission Properties of Optical Fibers,” in Optoelectronic Technology and Lightwave Communications Systems, C. Lin, Ed., Dordrecht: Springer Netherlands, 1989, pp. 3–50. doi: 10.1007/978-94-011-7035-2_1. [53] R. Sen, M. Paul, M. Pal, A. Dhar, S. Bhadra, and K. Dasgupta, “Erbium Doped Optical Fibres — Fabrication Technology,” Journal of Optics, vol. 33, no. 4, pp. 257–275, 2004, doi: 10.1007/BF03354769. [54] S. Hamdi, A. Coillet, and P. Grelu, “Real-time characterization of optical soliton molecule dynamics in an ultrafast thulium fiber laser,” Opt Lett, vol. 43, no. 20, p. 4965, Oct. 2018, doi: 10.1364/ol.43.004965. [55] P. Grelu, “Solitary waves in ultrafast fiber lasers: From solitons to dissipative solitons,” Opt Commun, vol. 552, p. 130035, 2024, doi: https://doi.org/10.1016/j.optcom.2023.130035. [56] W. Belardi, “Hollow-Core Optical Fibers,” Fibers, vol. 7, p. 50, May 2019, doi: 10.3390/fib7050050. [57] E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Advanced Materials, vol. 16, no. 19, pp. 1685–1706, Oct. 2004, doi: 10.1002/adma.200400271. [58] S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput Sci Eng, vol. 3, no. 6, pp. 38–47, 2001, doi: 10.1109/5992.963426. [59] T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, design, and applications. Springer US, 2010. doi: 10.1007/978-1-4419-0573-4. 79 [60] D. Sirbuly, M. Law, H. Yan, and P. Yang, “Semiconductor Nanowires for Subwavelength Photonics Integration,” J Phys Chem B, vol. 109, pp. 15190–15213, Sep. 2005, doi: 10.1021/jp051813i. [61] M. Alshareef et al., “Optical Detection of Acetone Using ‘ Turn-Off’ Fluorescent Rice Straw Based Cellulose Carbon Dots Imprinted onto Paper Dipstick for Diabetes Monitoring,” ACS Omega, 2022, doi: 10.1021/acsomega.2c01492. [62] L. Novotny and B. Hecht, “PRINCIPLES OF NANO-OPTICS.” [63] N. F. Tyndall, T. H. Stievater, D. A. Kozak, M. W. Pruessner, and W. S. Rabinovich, “Mode-crossing spectroscopy for photonic waveguide characterization,” APL Photonics, vol. 4, no. 10, Oct. 2019, doi: 10.1063/1.5099368. [64] A. A. Rifat et al., “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technology Letters, vol. 27, no. 15, pp. 1628–1631, 2015, doi: 10.1109/LPT.2015.2432812. [65] H. Ma, J. Yang, J. Huang, Z. Zhang, and K. Zhang, “Inverse-designed single-mode and multi-mode nanophotonic waveguide switches based on hybrid silicon-Ge2Sb2Te5 platform,” Results Phys, vol. 26, p. 104384, 2021, doi: https://doi.org/10.1016/j.rinp.2021.104384. [66] S. Liu, W. Gao, H. Li, Y. Dong, and H. Zhang, “Liquid-filled simplified hollow-core photonic crystal fiber,” Opt Laser Technol, vol. 64, pp. 140–144, 2014, doi: 10.1016/j.optlastec.2014.05.018. [67] M. R. Islam, A. N. M. Iftekhar, A. A. Hassan, S. Zaman, and M. A. Al Hosain, “Double plasmonic peak shift sensitivity: an analysis of a highly sensitive LSPR-PCF sensor for a diverse range of analyte detection,” Appl Phys A Mater Sci Process, vol. 129, no. 8, Aug. 2023, doi: 10.1007/s00339-023-06851-3. [68] D. Pysz et al., “Stack and draw fabrication of soft glass microstructured fiber optics,” Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 62, no. 4, pp. 667– 682, Dec. 2014, doi: 10.2478/bpasts-2014-0073. [69] T. Mans, J. Dolkemeyer, and C. Schnitzler, “Flexible 500W innoslab laser system with pulse durations from 0.5ps to 7.5ps and 300μJ pulse energy,” in 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, 2013, p. 1. doi: 10.1109/CLEOE-IQEC.2013.6801056. 80 [70] G. Račiukaitis, “Ultra-Short Pulse Lasers for Microfabrication: A Review,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 27, no. 6, pp. 1–12, 2021, doi: 10.1109/JSTQE.2021.3097009 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2339
dc.description Supervised by Mr. Sheikh Montasir Mahbub, Lecturer, Department of Electrical and Electronic Engineering (EEE) Islamic University of Technology (IUT) Board Bazar, Gazipur, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2024 en_US
dc.description.abstract Over the years, researchers have proposed numerous designs for traditional PCFs, featuring various structures, sensitivities, and confinement losses. However, most of the designs proposed offer either high sensitivity with high confinement losses or low sensitivity with low losses and too much computations. After carefully reviewing several prior works and considering their problems, we have developed our sensors by analyzing changes in the shape of ultra-short pulses (USP) passed through Hollow Core Photonic Crystal Fiber (HC-PCF) using COMSOL Multiphysics 5.6. Nowadays, adulteration in fuel is a noteworthy concern due to its impact on engine performance, environmental pollution, and economic losses. Detecting adulteration in diesel fuel is a challenging task and it requires identifying adulterants without compromising safety or quality standards. We introduced a novel approach to sense diesel adulteration levels by analyzing changes in the shape of USPs passing through HC-PCF. This method advantages are fiber characteristics, including nonlinear parameters, to see how the shape of ultra-short pulses changes as they travel through diesel-filled HC-PCF. With the proposed sensor, we achieved remarkable compression sensitivity and power increases for diesel samples with varying adulteration levels under different input configurations. The method demonstrated a minimum sensitivity of 16%, indicating that the pulse is compressed by a factor of six, and the maximum power increase observed was 648.072 W. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Elecrtonics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.subject Hollow core photonic crystal fiber, Ultra-short pulse, Power Upsurge, Compression sensitivity, Nonlinearity. en_US
dc.title Investigation on Mapping Highly Sensitive and Tunable Hollow Core Photonic Crystal Fiber Facilitated With Ultra-Short Pulse for Multipurpose Applications en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics