dc.identifier.citation |
1. Acharya, U. R., Fujita, H., Lih, O. S., Adam, M., Tan, J. H., & Chua, C. K. (2017). Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Information Sciences, 405, 81–90. https://doi.org/10.1016/j.ins.2017.04.012 2. Kachuee, M., Fazeli, S., & Sarrafzadeh, M. (2018). ECG heartbeat classification: A deep transferable representation. Proceedings - 2018 IEEE International Conference on Healthcare Informatics, ICHI 2018, 443–444. https://doi.org/10.1109/ICHI.2018.00092 3. He, H., & Wu, D. (2017). Imbalanced data sampling approaches for improved classification accuracy in arrhythmia detection. Journal of Biomedical Informatics, 65, 55–64. https://doi.org/10.1016/j.jbi.2016.12.007 4. C. Guo, B. Yin, and J. Hu, “An electrocardiogram classification using a multiscale convolutional causal attention network,” Electronics, vol. 13, no. 2, p. 326, Jan. 2024, doi: 10.3390/electronics13020326. 5. Kiranyaz, S., Ince, T., Pulkkinen, J., & Gabbouj, M. (2016). Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Transactions on Biomedical Engineering, 63(3), 664–675. https://doi.org/10.1109/TBME.2015.2468589 6. Yildirim, O., Baloglu, U. B., Tan, R. S., Ciaccio, E. J., & Acharya, U. R. (2018). A new approach for arrhythmia classification using deep coded features and LSTM networks. Computer Methods and Programs in Biomedicine, 153, 75–85. https://doi.org/10.1016/j.cmpb.2017.10.020 7. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., & Stanley, H. E. (2000). Physiobank, 44 physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation, 101(23), e215–e220. https://doi.org/10.1161/01.CIR.101.23.e215 8. A. Shoughi and M. B. Dowlatshahi, A practical system based on CNN-BLSTM network for accurate classification of ECG heartbeats of MIT-BIH imbalanced dataset. 2021. doi: 10.1109/csicc52343.2021.9420620. 9. S. U. Hassan, M. S. M. Zahid, and K. Husain, "Impact of Bidirectional LSTM Layer Variation on Cardiac Arrhythmia Detection Performance," in *E-Proceedings of the 5th International Multi-Conference on Artificial Intelligence Technology (MCAIT2021)*, 2021, pp. 86-90. 10.K. Polat and S. Öztürk, Diagnostic biomedical signal and image processing applications with deep learning methods. Elsevier, 2023. 11.I. B. Slimen, L. Boubchir, Z. Mbarki, and H. Seddik, “EEG epileptic seizure detection and classification based on dual-tree complex wavelet transform and machine learning algorithms,” Journal of Biomedical Research/Journal of Biomedical Research, vol. 34, no. 3, p. 151, Jan. 2020, doi: 10.7555/jbr.34.20190026. 12.M. Alazab, S. Khan, S. S. R. Krishnan, Q.-V. Pham, M. P. K. Reddy, and T. R. Gadekallu, “A multidirectional LSTM model for predicting the stability of a smart grid,” IEEE Access, vol. 8, pp. 85454–85463, Jan. 2020, doi: 10.1109/access.2020.2991067. |
en_US |