Design of a Highly Sensitive Photonic Crystal Fibre Sensor for Detecting Biochemical Analytes

Show simple item record

dc.contributor.author Dola, Fariba Tabassum
dc.contributor.author Awsaf, S M Azmain
dc.contributor.author Apon, Jubair Mahamud
dc.date.accessioned 2025-03-04T06:21:46Z
dc.date.available 2025-03-04T06:21:46Z
dc.date.issued 2024-06-25
dc.identifier.citation [1] D. R. Thevenot, K. Tóth, R. A. Durst, and G. S. Wilson, “Electrochemical Biosensors: Recommended Definitions and Classification,” Pure Appl. Chem., vol. 71, no. 12, pp. 2333–2348, Jan. 1999, doi: 10.1351/pac199971122333. [2] B. K. Paul, K. Ahmed, S. Asaduzzaman, and M. S. Islam, “Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis,” Sens. Bio-Sensing Res., vol. 12, pp. 36–42, Feb. 2017, doi: 10.1016/j.sbsr.2016.11.005. [3] S. Chowdhury et al., “Porous shaped photonic crystal fiber with strong confinement field in sensing applications: Design and analysis,” Sens. Bio-Sensing Res., vol. 13, pp. 63–69, 2017, doi: 10.1016/j.sbsr.2017.03.002. [4] S. Sen, S. Chowdhury, K. Ahmed, and S. Asaduzzaman, “Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength,” Photonic Sensors, vol. 7, no. 1, pp. 55–65, 2017, doi: 10.1007/s13320-016-0384-y. [5] I. Islam et al., “Highly birefringent single mode spiral shape photonic crystal fiber based sensor for gas sensing applications,” Sens. Bio-Sensing Res., vol. 14, no. April, pp. 30–38, Jun. 2017, doi: 10.1016/j.sbsr.2017.04.001. [6] J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., vol. 377, no. 3, pp. 528–539, Oct. 2003, doi: 10.1007/s00216-003-2101-0. [7] R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J., vol. 6, no. 4, pp. 1–11, Aug. 2014, doi: 10.1109/JPHOT.2014.2335716. [8] J. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End,” Sensors, vol. 14, no. 10, pp. 18701–18710, Oct. 2014, doi: 10.3390/s141018701. 96 [9] E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron., vol. 48, no. 11, pp. 1403–1410, 2012, doi: 10.1109/JQE.2012.2213803. [10] A. A. Rifat et al., “Photonic crystal fiber based plasmonic sensors,” Sensors Actuators B Chem., vol. 243, pp. 311–325, May 2017, doi: 10.1016/j.snb.2016.11.113. [11] J. Piehler, A. Brecht, and G. Gauglitz, “Affinity Detection of Low Molecular Weight Analytes,” Anal. Chem., vol. 68, no. 1, pp. 139–143, Jan. 1996, doi: 10.1021/ac9504878. [12] R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sensors Actuators B Chem., vol. 10, no. 3, pp. 209–217, Feb. 1993, doi: 10.1016/0925-4005(93)87008-D. [13] C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, and F. S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens. Bioelectron., vol. 15, no. 11–12, pp. 579–589, Dec. 2000, doi: 10.1016/S0956-5663(00)00122-6. [14] D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sensors Actuators B Chem., vol. 19, no. 1–3, pp. 581–586, Apr. 1994, doi: 10.1016/0925-4005(93)01090-Q. [15] R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy, and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens. Bioelectron., vol. 8, no. 7–8, pp. 347–354, Jan. 1993, doi: 10.1016/0956-5663(93)80073-X. [16] “Optical Biosensors: Present & Future - Google Books.” https://books.google.com.bd/books?hl=en&lr=&id=HLGw94bcNBYC&oi=fnd&pg=P A207&dq=Homola+J,+Yee+S,+Myszka+D+(2002)+Surface+plasmon+biosensors.+In :+Ligler+FS,+Taitt+CR+(eds)+Optical+biosensors:+present+and+future.+Elsevier.&o ts=vmH128o0cE&sig=gU6k1xGIE5rn4GRxlOBe9t67wRE&redir_esc=y#v=onepage&q&f=f alse (accessed Mar. 06, 2021). 97 [17] R. Stoltenburg, C. Reinemann, and B. Strehlitz, “SELEX—A (r)evolutionary method to generate high-affinity nucleic acid ligands,” Biomol. Eng., vol. 24, no. 4, pp. 381–403, Oct. 2007, doi: 10.1016/j.bioeng.2007.06.001. [18] S. Ray, G. Mehta, and S. Srivastava, “Label-free detection techniques for protein microarrays: Prospects, merits and challenges,” Proteomics, vol. 10, no. 4, pp. 731–748, Feb. 2010, doi: 10.1002/pmic.200900458. [19] E. Kretschmann and H. Raether, “Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light,” Zeitschrift für Naturforsch. A, vol. 23, no. 12, pp. 2135–2136, Dec. 1968, doi: 10.1515/zna-1968-1247. [20] J. N. Dash, R. Das, and R. Jha, “AZO coated microchannel incorporated PCF-based SPR sensor: A numerical analysis,” IEEE Photonics Technol. Lett., vol. 30, no. 11, pp. 1032–1035, 2018, doi: 10.1109/LPT.2018.2829920. [21] S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron., vol. 48, no. 2, p. 142, Feb. 2016, doi: 10.1007/s11082-016-0414-4. [22] A. A. Rifat, F. haider, R. Ahmed, G. A. Mahdiraji, F. R. Mahamd Adikan, “Highly Sensitive Photonic Crystal Fiber Based on Surface Plasmon Resonance,” IEEE Sens. J., vol. 16, no. 4, pp. 959–964, Feb. 2016, doi: 10.1109/JSEN.2015.2496911. [23] H. K. Kim et al., “Investigation of a self-assembled monolayer-based surface plasmon resonance immunosensor for the detection of Escherichia coli O157” Biosens. Bioelectron., vol. 19, no. 10, pp. 1371–1379, Jun. 2004, doi: 10.1016/j.bios.2003.11.018. [24] H. Ouyang, D. Strahan, and I. M. White, “Design of High Performance Liquid Chromatography Surface Plasmon Resonance Sensors,” Anal. Chem., vol. 77, no. 5, pp. 1519–1524, Mar. 2005, doi: 10.1021/ac048668o. [25] A. P. Nieva et al., “Surface Plasmon Resonance Optical Sensing of Ultrasensitive Biomolecular Interactions from Lymphocyte Homogenates,” Anal. Chem., vol. 77, no. 20, pp. 6976–6984, Oct. 2005, doi: 10.1021/ac050708q. 98 [26] J. B. Jackson and N. J. Halas, “Surface-Enhanced Raman Scattering on Tunable Plasmonic Nanoparticle Substrates,” Proc. Natl. Acad. Sci., vol. 101, no. 52, pp. 17930–17935, Dec. 2004, doi: 10.1073/pnas.0408318102. [27] R. Shukla, V. Bansal, S. Chaudhary, A. Basu, and T. R. Tyagi, “Highly sensitive detection of Salmonella typhi using surface plasmon resonance,” Talanta, vol. 78, no. 1, pp. 310–315, Apr. 2009, doi: 10.1016/j.talanta.2008.11.026. [28] E. A. Kowalczewski, G. G. Daaboul, and J. P. Landers, “Electrochemical and surface plasmon resonance studies of DNA hybridization and hydrolysis reactions,” J. Electroanal. Chem., vol. 566, pp. 273–280, Jan. 2004, doi: 10.1016/j.jelechem.2003.10.021. [29] B. D. Reiss, M. A. Smith, and M. Sumper, “Recombinant Diatom Biosilica Adsorbents for the Removal of Heavy Metals from Water,” J. Nanoparticle Res., vol. 10, no. 4, pp. 795–814, Jun. 2008, doi: 10.1007/s11051-007-9282-4. [30] J. A. Duffy, K. J. Braddy, and A. E. Johnson, “Fluorescent detection of biomolecular interactions using far-field microscopy,” Biosens. Bioelectron., vol. 15, no. 5–6, pp. 297–304, May 2000, doi: 10.1016/S0956-5663(00)00070-4. [31] K. S. Varshney, T. V. Todorov, and M. Y. Arshad, “Plasmon-Enhanced Optical Sensors: A Review,” ECS J. Solid State Sci. Technol., vol. 8, no. 6, pp. Q3195–Q3202, Jan. 2019, doi: 10.1149/2.0251906jss. [32] C. E. Jordan and R. J. Corn, “Surface Plasmon Resonance Imaging Measurements of DNA Hybridization Adsorption and Streptavidin-DNA Complex Formation at Chemically Modified Gold Interfaces,” Anal. Chem., vol. 74, no. 1, pp. 78–85, Jan. 2002, doi: 10.1021/ac010689t. [33] A. B. Dahlin, J. Höök, A. Rüter, F. Männel, and B. Kasemo, “QCM-D Studies of Layer-by-Layer Assembly of Oppositely Charged Polyelectrolytes on Gold,” Anal. Chem., vol. 76, no. 23, pp. 6959–6965, Dec. 2004, doi: 10.1021/ac0490997. [34] M. C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chem. Rev., vol. 104, no. 1, pp. 293–346, Jan. 2004, doi: 10.1021/cr030698+. 99 [35] A. Danek, J. M. Fiurasek, and A. Z. Brozek-Pluska, “Gold nanoparticles in modern photonic and analytical applications,” Analyst, vol. 142, no. 8, pp. 1232–1249, Apr. 2017, doi: 10.1039/c7an00021h. [36] D. Zhang, Z. Chen, J. Li, and L. Xie, “Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications,” Sensors, vol. 7, no. 5, pp. 737–755, May 2007, doi: 10.3390/s7050737. [37] G. D. Shafran, G. H. Patterson, L. S. Knudsen, and A. L. Waggoner, “Signal Enhancement in Fluorescence Microscopy for Optimal Resolution and Sensitivity,” J. Microsc., vol. 185, no. 1, pp. 1–6, Jul. 1997, doi: 10.1046/j.1365-2818.1997.1350730.x. [38] R. A. Graham, L. M. Stevenson, T. D. James, and M. J. F. Strouse, “A rapid and sensitive assay for α-fetoprotein based on fluorescence quenching of quantum dots,” Chem. Commun., vol. 49, no. 35, pp. 3675–3677, May 2013, doi: 10.1039/c3cc40982f. [39] S. Kumar, N. Bansal, V. Nayyar, and R. C. Sobti, “Utility of Quantum Dots in Molecular Diagnostics,” J. Nanotechnol., vol. 2013, pp. 1–12, Dec. 2013, doi: 10.1155/2013/676784. [40] A. M. Alkilany and C. J. Murphy, “Nanostars as a new platform for nanoprobes: synthesis, characterization, and applications,” Adv. Mater., vol. 22, no. 36, pp. 3175–3192, Sep. 2010, doi: 10.1002/adma.200904193. [41] Y. Lu, J. Yin, and Y. Yong, “Current Advances in Quantum Dot-Antibody Conjugates for Molecular Imaging,” Curr. Mol. Med., vol. 14, no. 7, pp. 817–826, Aug. 2014, doi: 10.2174/1566524014666140830114023. [42] A. M. Smith and S. Nie, “Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering,” Acc. Chem. Res., vol. 43, no. 2, pp. 190–200, Feb. 2010, doi: 10.1021/ar9001069. [43] J. H. Park, G. von Maltzahn, L. L. Zhang, A. M. Schwartz, E. Ruoslahti, and S. N. Bhatia, “Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging,” Adv. Mater., vol. 20, no. 9, pp. 1630–1635, May 2008, doi: 10.1002/adma.200800004. 100 [44] J. W. M. Bulte and D. L. Kraitchman, “Iron Oxide MR Contrast Agents for Molecular and Cellular Imaging,” NMR Biomed., vol. 17, no. 7, pp. 484–499, Nov. 2004, doi: 10.1002/nbm.924. [45] C. S. S. R. Kumar and W. E. Kaden, “Gold Nanoparticle-based Multimodal Ovalbumin Vaccine for Potent Cancer Immunotherapy,” Mol. Pharm., vol. 15, no. 7, pp. 2592–2598, Jun. 2018, doi: 10.1021/acs.molpharmaceut.8b00224. [46] N. Pal, S. Kyriacou, and M. J. Mullett, “Biosensors in forensic sciences,” in Comprehensive Analytical Chemistry, vol. 74, J.-L. Marty, Ed. Elsevier, 2017, pp. 49–75, doi: 10.1016/B978-0-444-63996-7.00003-4. [47] M. J. Schulz et al., “Tuning Nanoparticle Interactions with Oligonucleotides and Peptides by the Specific Recognition of Phosphate Groups,” J. Am. Chem. Soc., vol. 126, no. 5, pp. 1479–1485, Feb. 2004, doi: 10.1021/ja037729l. [48] B. Dubertret et al., “In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles,” Science, vol. 298, no. 5599, pp. 1759–1762, Nov. 2002, doi: 10.1126/science.1077194. [49] W. C. Chan and S. Nie, “Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,” Science, vol. 281, no. 5385, pp. 2016–2018, Sep. 1998, doi: 10.1126/science.281.5385.2016. [50] Y. K. Tzeng, C. T. Fang, C. H. Yang, and W. C. Chang, “Virus-based nanoparticles as versatile nano-carriers for drug delivery,” Adv. Drug Deliv. Rev., vol. 106, pp. 3–14, Aug. 2016, doi: 10.1016/j.addr.2016.03.002. [51] K. R. Lee, J. Y. Lee, and I. K. Lee, “Facile and scalable fabrication of highly efficient SERS substrates consisting of gold nanoparticle-decorated reduced graphene oxide nanosheets,” Sens. Actuators B Chem., vol. 272, pp. 431–437, Feb. 2018, doi: 10.1016/j.snb.2018.05.117. [52] A. A. Bagal-Kestwal, M. B. Kestwal, J. H. Hahn, and S. W. Choi, “Recent Trends in Nanobiosensor Design for Detection of Circulating Tumor Cells in Clinical Blood Samples,” Sensors, vol. 18, no. 4, p. 1149, Apr. 2018, doi: 10.3390/s18041149. 101 [53] F. Hussain, F. Iqbal, T. Shahzad, and M. R. Nisar, “Quantum dots as superior probes for biosensors: A review,” Analyt. Methods, vol. 11, no. 10, pp. 1385–1395, Mar. 2019, doi: 10.1039/C8AY02436F. [54] A. M. Alkilany, K. Lohse, and C. J. Murphy, “The Gold Standard: Gold Nanoparticle Libraries To Understand the Nano–Bio Interface,” Acc. Chem. Res., vol. 46, no. 3, pp. 650–661, Jan. 2013, doi: 10.1021/ar3000682. [55] Y. Song et al., “Application of carbon nanotubes in immunodetection: A review,” Anal. Chim. Acta, vol. 744, pp. 30–44, Dec. 2012, doi: 10.1016/j.aca.2012.07.056. [56] J. E. Millstone, P. M. Metraux, C. A. Mirkin, “Controlling the edge length of gold nanoprisms via a seed-mediated approach,” Adv. Funct. Mater., vol. 16, no. 9, pp. 1209–1214, May 2006, doi: 10.1002/adfm.200500998. [57] Y. Pan, S. Neupane, N. H. Mahmood, and P. Thapa, “Nanotechnology and biosensors,” in Advances in Environmental Monitoring and Assessment, S. A. Khan, Ed. Elsevier, 2021, pp. 147–178, doi: 10.1016/B978-0-12-821442-1.00008-8. [58] J. Niu, M. H. Song, M. D. Kahook, and V. V. Setaluri, “Copper sulfide nanoparticles as photothermal transducers for cancer treatment,” Nanoscale, vol. 7, no. 6, pp. 2520–2526, Feb. 2015, doi: 10.1039/C4NR06685F. [59] H. Zhang et al., “Recent Advances of Nanoparticles in Biomarkers Detection,” Sensors, vol. 17, no. 2, p. 202, Jan. 2017, doi: 10.3390/s17020202. [60] G. Ferreira et al., “Photothermal therapy mediated by gold nanorods: the influence of the irradiation time on the efficiency of the cell treatment,” J. Nanobiotechnology, vol. 16, no. 1, p. 90, Sep. 2018, doi: 10.1186/s12951-018-0422-3. [61] K. S. Varshney, T. V. Todorov, and M. Y. Arshad, “Plasmon-Enhanced Optical Sensors: A Review,” ECS J. Solid State Sci. Technol., vol. 8, no. 6, pp. Q3195–Q3202, Jan. 2019, doi: 10.1149/2.0251906jss. [62] G. Ferreira et al., “Photothermal therapy mediated by gold nanorods: the influence of the irradiation time on the efficiency of the cell treatment,” J. Nanobiotechnology, vol. 16, no. 1, p. 90, Sep. 2018, doi: 10.1186/s12951-018-0422-3. 102 [63] X. Tian, Y. He, Z. Su, and X. Su, “Nanoplasmonic sensors for detecting circulating tumor DNA for cancer diagnosis,” Nanotechnology, vol. 29, no. 45, p. 452002, Sep. 2018, doi: 10.1088/1361-6528/aad939. [64] M. W. Urban, S. Yun, S. Chen, S. Manickam, and C. Wang, “Gold Nanoparticle-Based Theranostic Platforms for Diagnosis and Therapy of Cardiovascular Diseases,” in Nanostructures for the Engineering of Cells, Tissues and Organs, A. S. G. Khalil, Ed. Elsevier, 2018, pp. 179–198, doi: 10.1016/B978-0-12-813669-0.00011-4. [65] P. Zrazhevskiy and X. Gao, “Multifunctional quantum dots for personalized medicine,” Nano Today, vol. 9, no. 4, pp. 441–463, Aug. 2014, doi: 10.1016/j.nantod.2014.06.002. [66] R. J. Molinaro, C. Wolfram and J. L. Garnett, “Understanding and exploiting nanoparticles' intimacy with the blood vessel and blood,” Chem. Soc. Rev., vol. 44, no. 17, pp. 6157–6212, Sep. 2015, doi: 10.1039/c5cs00157h. [67] X. Y. Liu, Z. Q. Nie, and Y. Y. Guo, “Versatile and Simple Approach to Constructing Functional Materials Using Gold Nanorods,” Chem. Mater., vol. 23, no. 17, pp. 4090–4096, Aug. 2011, doi: 10.1021/cm2011667. [68] R. K. Gupta et al., “Multifunctional nanoparticles and their biomedical applications,” Nanomaterials, vol. 9, no. 11, p. 1690, Nov. 2019, doi: 10.3390/nano9111690. [69] L. S. Taylor, G. G. Swartz, and J. Zhang, “High-Throughput Crystallization: Polymorphs, Salts, Co-Crystals and Solvates of Pharmaceutical Solids,” in Springer Handbook of Crystal Growth, P. Rudolph, Ed. Springer Berlin Heidelberg, 2010, pp. 1063–1092, doi: 10.1007/978-3-540-74723-0_34. [70] H. Lee, S. M. Dellatore, W. M. Miller, and P. B. Messersmith, “Mussel-Inspired Surface Chemistry for Multifunctional Coatings,” Science, vol. 318, no. 5849, pp. 426–430, Oct. 2007, doi: 10.1126/science.1147241. [71] A. Yildirim and E. S. Oren, “Theranostic Magnetic Nanoparticles for Efficient Cancer Treatment,” Nanomaterials, vol. 10, no. 4, p. 746, Apr. 2020, doi: 10.3390/nano10040746. 103 [72] K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing,” Annu. Rev. Phys. Chem., vol. 58, no. 1, pp. 267–297, May 2007, doi: 10.1146/annurev.physchem.58.032806.104607. [73] T. P. Lodge and A. I. Bruce, “Solvate Ionic Liquids,” in Ionic Liquids in Synthesis, P. Wasserscheid and T. Welton, Eds. Wiley-VCH Verlag GmbH & Co. KGaA, 2007, pp. 359–378, doi: 10.1002/9783527619452.ch19. [74] J. R. A. Haeussler et al., “Development and Validation of an in Silico Predictor of Emulsion Stability,” J. Pharm. Sci., vol. 100, no. 1, pp. 170–182, Jan. 2011, doi: 10.1002/jps.22268. [75] A. Bumb, S. M. Brechbiel, and S. Choyke, “Macromolecular and Nanosized Molecular Imaging Agents: Design, Synthesis, and Application,” Mol. Imaging, vol. 7, no. 2, pp. 85–101, Apr. 2008, doi: 10.2310/7290.2008.00011. [76] M. F. Kircher, J. R. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, S. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir. [77] J. Z. Hilt, S. Gupta, J. W. K. Loutzenhiser, and C. C. Sumerlin, “Poly(ethylene glycol)-Based Hydrogels with Enzyme-Sensitive Degradation,” Macromolecules, vol. 42, no. 20, pp. 6732–6740, Oct. 2009, doi: 10.1021/ma9013663. [78] S. F. Banaszak Holl, D. A. Leckband, A. L. Rand, J. M. Ariga, and D. G. Blair, “Applications of Surface-Enhanced Raman Scattering to Imaging and Analysis of Membrane Proteins,” Annu. Rev. Anal. Chem., vol. 2, no. 1, pp. 217–239, Jun. 2009, doi: 10.1146/annurev.anchem.1.031207.113021. [79] D. E. Discher, A. Eisenberg, “Polymer Vesicles,” Science, vol. 297, no. 5583, pp. 967-973, Aug. 2002, doi: 10.1126/science.1074972. [80] N. Huynh, L. V. Nguyen, and C. C. Lee, “Magnetic Nanostructures: Fabrication, Properties, and Applications,” J. Phys. Chem. C, vol. 112, no. 30, pp. 11336-11368, Jul. 2008, doi: 10.1021/jp800612w. 104 [81] E. O. Smetana, A. A. Smetana, and J. C. Giddings, “Ultracentrifugation, Zone Electrophoresis, and Related Techniques for Separation and Characterization of Macromolecules and Particles,” Analytical Chemistry, vol. 55, no. 5, pp. 12A-34A, May 1983, doi: 10.1021/ac00257a005. [82] L. K. Patra and G. D. Sharma, “Characterization and applications of semiconductor nanoparticles,” J. Nanosci. Nanotechnol., vol. 8, no. 10, pp. 5263-5276, Oct. 2008, doi: 10.1166/jnn.2008.173. [83] Y. Liu, L. Liu, and Y. He, “Construction of glucose biosensors based on the nanomaterials,” Electroanalysis, vol. 20, no. 1, pp. 5-15, Jan. 2008, doi: 10.1002/elan.200703878. [84] A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem, vol. 1, no. 1, pp. 18-52, Jan. 2000, doi: 10.1002/1439-7641(20000915)1:1<18::AID-CPHC18>3.0.CO;2-I. [85] C. M. Aikens and G. C. Schatz, “Understanding the Optical Properties of Metal Nanoparticles: Insights from Computational Methods,” Chem. Soc. Rev., vol. 37, no. 5, pp. 1043-1055, May 2008, doi: 10.1039/b711490g. [86] M. S. Bakshi, M. B. Thakkar, and S. D. Patel, “Acute toxicity of zinc oxide nanoparticles to rats,” Journal of Pharmacy & Bioallied Sciences, vol. 4, no. 7, pp. 349-354, Sep. 2012, doi: 10.4103/0975-7406.103255. [87] J. Zhang, H. Liu, and Y. Sun, “Purification of single-walled carbon nanotubes,” Materials Science & Engineering R: Reports, vol. 59, no. 1, pp. 1-23, Aug. 2008, doi: 10.1016/j.mser.2007.07.001. [88] S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chemical Physics Letters, vol. 288, no. 2-4, pp. 243-247, Apr. 1998, doi: 10.1016/S0009-2614(98)00277-2. [89] S. Y. Lee and J. H. Lee, “Facile preparation of highly stable and magnetic iron oxide nanoparticles via surface regulation: A promising material for biomedical applications,” Materials Science and Engineering: C, vol. 83, no. 1, pp. 166-173, Jul. 2018, doi: 10.1016/j.msec.2017.08.060. 105 [90] E. L. S. Costeira, A. M. G. Silva, and C. L. M. Silva, “Carbon nanotubes as a novel tool for vaccination against infectious diseases and cancer,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 12, pp. 8657-8670, Dec. 2010, doi: 10.1166/jnn.2010.2694. [91] K. K. Dey and V. Srinivasan, “Incorporation of Carbon Nanotubes in Electrically Conductive Adhesives for Bonding Applications,” Nanotechnology, vol. 19, no. 14, pp. 145710, Apr. 2008, doi: 10.1088/0957-4484/19/14/145710. [92] G. Zhang, Y. Jia, F. Li, Y. Jiang, and Y. Wang, “A brief review on atomic force microscopy technology and its application in surface morphology studies,” Journal of Materials Science & Technology, vol. 34, no. 4, pp. 322-330, Apr. 2018, doi: 10.1016/j.jmst.2017.08.001. [93] L. Wang, X. Wang, X. Zhang, X. Hu, and Q. Wang, “Polymer/nanoparticle composites: From fundamental interactions to applications,” Materials Chemistry Frontiers, vol. 3, no. 1, pp. 11-29, Jan. 2019, doi: 10.1039/C8QM00428E. [94] H. Y. Chan, D. St C. Black, T. Karunaratne, A. Bansal, R. K. O'Reilly, D. J. L. Brett, and R. M. Williams, “A highly stable cathode for lithium-oxygen batteries,” Nature Communications, vol. 6, no. 1, pp. 1-10, Jun. 2015, doi: 10.1038/ncomms8582. [95] A. V. Kabashin, P. Evans, X. M. Yu, and B. R. Davies, “Surface plasmon resonance excitation of gold nanoparticles and spectroscopic detection of biomolecular binding on surfaces,” Journal of Molecular Structure, vol. 744-747, no. 1, pp. 613-619, Aug. 2005, doi: 10.1016/j.molstruc.2004.11.052. [96] M. T. Anwar, M. M. Hassan, M. A. Bakar, S. E. I. Dughaish, and M. A. Awang, “Effect of pH on the photo-catalytic reduction of CO2 over TiO2 nanoparticles,” Journal of Materials Science: Materials in Electronics, vol. 27, no. 7, pp. 6762-6767, Jul. 2016, doi: 10.1007/s10854-016-4808-0. [97] C. Yu, Z. Niu, X. Liu, and L. Zhang, “A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites,” Composites Science and Technology, vol. 75, no. 1, pp. 1-7, Jan. 2013, doi: 10.1016/j.compscitech.2012.11.016. 106 [98] D. J. Broer, D. P. C. O. v. d. Vos, M. E. van der Kooij, and R. A. L. Vallée, “Surface-relief gratings formed by visible light exposure of smectic liquid crystal films,” Nature, vol. 378, no. 6558, pp. 467-469, Nov. 1995, doi: 10.1038/378467a0. [99] S. Zhang, D. Xie, X. Wang, Z. Wang, and D. Guan, “Superior mechanical strength of graphene/cement composite,” Composites Part B: Engineering, vol. 43, no. 5, pp. 2583-2589, Jul. 2012, doi: 10.1016/j.compositesb.2012.03.007. [100] T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA Array Detection with Nanoparticle Probes,” Science, vol. 289, no. 5485, pp. 1757-1760, Sep. 2000, doi: 10.1126/science.289.5485.1757. [101] A. H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: Synthesis, protection, functionalization, and application,” Angewandte Chemie International Edition, vol. 46, no. 8, pp. 1222-1244, Feb. 2007, doi: 10.1002/anie.200602866. [102] H. Wei, E. Wang, “Knotting carbon nanotubes with DNA,” Nature Materials, vol. 5, no. 10, pp. 771-772, Sep. 2006, doi: 10.1038/nmat1738. [103] Y. N. Xia and Y. M. Xiong, “Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?” Angewandte Chemie International Edition, vol. 48, no. 1, pp. 60-103, Dec. 2008, doi: 10.1002/anie.200802248. [104] D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Physical Review Letters, vol. 60, no. 12, pp. 1134-1137, Mar. 1988, doi: 10.1103/PhysRevLett.60.1134. [105] X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers in Medical Science, vol. 23, no. 3, pp. 217-228, Aug. 2008, doi: 10.1007/s10103-007-0470-x. [106] S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” Journal of Applied Physics, vol. 98, no. 1, pp. 011101, Jul. 2005, doi: 10.1063/1.1951057. 107 [107] B. Nikoobakht and M. A. El-Sayed, “Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method,” Chemistry of Materials, vol. 15, no. 10, pp. 1957-1962, May 2003, doi: 10.1021/cm020732l. [108] S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” The Journal of Physical Chemistry B, vol. 103, no. 40, pp. 8410-8426, Sep. 1999, doi: 10.1021/jp9917648. [109] J. J. Storhoff, A. A. Lazarides, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, and G. C. Schatz, “What controls the optical properties of DNA-linked gold nanoparticle assemblies?” Journal of the American Chemical Society, vol. 122, no. 19, pp. 4640-4650, May 2000, doi: 10.1021/ja993872b. [110] T. R. Jensen, C. H. Nielsen, L. P. Nielsen, and J. B. Wagner, “Synthesis and characterization of superparamagnetic nanoparticles for biomolecule conjugation and delivery,” Advanced Functional Materials, vol. 15, no. 8, pp. 1243-1248, Aug. 2005, doi: 10.1002/adfm.200400423. [111] J. Lee, M. A. Musick, S. P. Wiseman, and R. P. Van Duyne, “Nanoscale SE(R)RS Substrates: Physical Structure, Raman Enhancement Mechanism, and Molecular Sensing,” Journal of Physical Chemistry B, vol. 109, no. 12, pp. 5806-5811, Mar. 2005, doi: 10.1021/jp045965p. [112] L. Zang, W. A. Wei, and X. H. Jiang, “A study of enzymatic biosensors based on nanostructural materials,” Microchimica Acta, vol. 150, no. 1-2, pp. 1-17, Feb. 2005, doi: 10.1007/s00604-005-0386-y. [113] H. Wang, X. Zhang, G. Wang, Y. Zhang, and L. Guo, “Influence of B and Ni doping on the electronic structure and optical absorption of anatase TiO2 : A first-principles study,” Physical Review B, vol. 76, no. 16, pp. 165202, Oct. 2007, doi: 10.1103/PhysRevB.76.165202. [114] M. M. Maye, C. Han, R. A. Korgel, and T. P. Russell, “Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Size, Shape, and Structure,” Langmuir, vol. 21, no. 15, pp. 6799-6803, Jul. 2005, doi: 10.1021/la0501335. 108 [115] R. M. Williams and R. A. Dwek, “Glycomics: Where are we now?” Current Opinion in Chemical Biology, vol. 7, no. 5, pp. 616-621, Oct. 2003, doi: 10.1016/j.cbpa.2003.08.006. [116] Y. N. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, “Shape-controlled synthesis of metal nanocrystals: The case of silver,” Chemistry - A European Journal, vol. 12, no. 34, pp. 8957-8964, Dec. 2006, doi: 10.1002/chem.200600713. [117] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” The Journal of Physical Chemistry B, vol. 107, no. 3, pp. 668-677, Jan. 2003, doi: 10.1021/jp026731y. [118] A. S. Susha, V. Kochetygov, A. L. Rogach, A. O. Orlov, D. N. Dirin, A. I. Baranov, and N. P. Gaponik, “Rapid Phase Transfer of Anisotropic PbS Quantum Dots Assisted by Trifluoromethanesulfonic Acid and Its Application in Solar Cells,” ACS Applied Materials & Interfaces, vol. 12, no. 4, pp. 4793-4801, Jan. 2020, doi: 10.1021/acsami.9b20616. [119] T. R. Lee, W. S. Chang, S. M. Bozhilov, J. P. H. Burt, P. C. Searson, “Flexible and Stretchable Nanowire Coatings for Smart Surfaces: Tunable Wettability, Icephobicity, and Sensing,” Langmuir, vol. 34, no. 9, pp. 3044-3051, Feb. 2018, doi: 10.1021/acs.langmuir.8b00038. [120] G. H. Li, Y. T. Li, L. R. Jiang, X. H. Hu, X. C. Chen, and Z. F. Liu, “Highly-sensitive acetaldehyde gas sensor based on ZnO nanoparticles prepared via a solution combustion method,” Sensors and Actuators B: Chemical, vol. 255, no. 3, pp. 2504-2510, May 2018, doi: 10.1016/j.snb.2017.09.174. [121] Y. F. Zhang, J. Lu, C. H. Zhou, W. J. Wei, J. H. Yang, and G. G. Wu, “Morphology evolution and field emission properties of hierarchical NiO nanostructures synthesized via a simple thermal evaporation route,” Journal of Nanoparticle Research, vol. 12, no. 8, pp. 2807-2815, Nov. 2010, doi: 10.1007/s11051-010-0051-2. [122] M. E. Caswell and B. D. Murphy, “Synthesis and Catalytic Application of Palladium Nanoparticles: A Review,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 448, no. 1, pp. 44-55, Sep. 2014, doi: 10.1016/j.colsurfa.2013.12.002. [123] X. Liu, D. Pan, T. Wu, C. Shi, Y. Hu, and J. Li, “Silver nanoparticles decorated graphene oxide for highly effective photocatalytic and antimicrobial activities,” Journal of 109 Alloys and Compounds, vol. 735, no. 1, pp. 2308-2317, Dec. 2018, doi: 10.1016/j.jallcom.2017.11.305. [124] S. K. H. Chu and R. M. Dickson, “Controlling the fluorescence of quantum dots by pH,” The Journal of Physical Chemistry Letters, vol. 1, no. 20, pp. 2964-2969, Sep. 2010, doi: 10.1021/jz101257p. [125] J. A. Fagan, J. M. Lüerßen, and L. W. Wang, “Direct and indirect band gap energy of cubic silicon carbide,” Applied Physics Letters, vol. 85, no. 4, pp. 635-637, Jul. 2004, doi: 10.1063/1.1777839. [126] W. Liu, M. Liu, Z. Wang, and Y. Wang, “Synthesis and antimicrobial activity of copper nanoparticles prepared via a chemical reduction route,” Microbial Pathogenesis, vol. 110, no. 3, pp. 245-251, Nov. 2017, doi: 10.1016/j.micpath.2017.07.045. [127] A. Reginald-Opara, C. U. Iroegbu, F. A. Umeoduagu, and J. O. Ejiogu, “Green synthesis, characterization and antibacterial efficacy of silver nanoparticles using methanolic stem extract of Theobroma cacao,” Journal of Microbiology, Biotechnology and Food Sciences, vol. 8, no. 1, pp. 819-825, Apr. 2019, doi: 10.15414/jmbfs.2018-19.8.1.819-825. [128] G. H. Wu, Z. L. Xu, G. P. Wu, Z. Z. Li, J. H. Li, and M. Y. Yin, “Sonochemical synthesis of PbS nanoparticles: effects of solvents and stabilizers,” Materials Chemistry and Physics, vol. 85, no. 1, pp. 27-32, Jul. 2004, doi: 10.1016/j.matchemphys.2004.01.009. [129] L. Xu, Q. Jiang, Y. Xiao, Y. Lin, L. J. Deng, and W. X. Zhang, “Surfactant-assisted synthesis and photocatalytic property of highly monodisperse zinc sulfide nanospheres,” Materials Letters, vol. 60, no. 11, pp. 1404-1407, Apr. 2006, doi: 10.1016/j.matlet.2005.11.032. [130] S. V. Dorozhkin, “Calcium orthophosphates (CaPO4): occurrence and properties,” Progress in Biomaterials, vol. 1, no. 1, pp. 2-35, Jan. 2012, doi: 10.1186/2194-0517-1-2. [131] A. L. R. Bugatti, P. G. C. Pujatti, J. M. A. Ribeiro, F. G. Emery, and S. E. Mazzetto, “Photoluminescent sensors based on gold nanoparticles,” Analytical and Bioanalytical Chemistry, vol. 404, no. 1, pp. 141-150, May 2012, doi: 10.1007/s00216-012-6175-8. en_US
dc.identifier.uri http://hdl.handle.net/123456789/2343
dc.description Supervised by Prof. Dr. Mohammad Rakibul Islam, Department of Electrical and Electronic Engineering (EEE) Islamic University of Technology (IUT) Board Bazar, Gazipur, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2024 en_US
dc.description.abstract We proffer in this research a distinctive, facile to fabricate, and highly sensitive photonic crystal fiber (PCF) biosensor based on the phenomenon of surface plasmon resonance (SPR). Our prototype has a strategic pattern of circular air holes inside the fiber, which leads to a superior sensing performance. The evaluation of all the sensor characteristics has been discharged by employing the finite element method (FEM) of COMSOL Multiphysics. The gold (Au) layer just around the fiber acts as the plasmonic material. After the optimization of all the fiber parameters, we derived a maximum amplitude sensitivity (AS) and wavelength sensitivity (WS) of 2202.64 RIU− 1 and 140,500 nm/RIU, respectively, with a maximum sensor resolution 7.11 × 10− 7 for wavelength and 4.54 × 10− 4 for amplitude. Moreover, the maximum figure of merit (FOM) procured was 2285. The overall analyte sensing range is from refractive indices 1.31 to 1.40, and the sensor has a fabrication tolerance limit of ±5% for the gold layer variation and ±2.5% for both of the air holes. With its enhanced performance in terms of sensitivity, we believe that this SPR-based PCF biosensor can potentially contribute to the detection of unknown analytes and in applications of medical diagnostics. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Elecrtonics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Design of a Highly Sensitive Photonic Crystal Fibre Sensor for Detecting Biochemical Analytes en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics