dc.identifier.citation |
[1] J. Du, “Understanding of Object Detection Based on CNN Family and YOLO,” J Phys Conf Ser, vol. 1004, p. 012029, Apr. 2018, doi: 10.1088/1742-6596/1004/1/012029. [2] G. L. Foresti and L. Snidaro, “Vehicle Detection and Tracking for Traffic Monitoring,” 2005, pp. 1198–1205. doi: 10.1007/11553595_147. [3] S. Aqel, A. Hmimid, M. A. Sabri, and A. Aarab, “Road traffic: Vehicle detection and classification,” in 2017 Intelligent Systems and Computer Vision (ISCV), IEEE, Apr. 2017, pp. 1–5. doi: 10.1109/ISACV.2017.8054969. [4] J. Zhou, D. Gao, and D. Zhang, “Moving Vehicle Detection for Automatic Traffic Monitoring,” IEEE Trans Veh Technol, vol. 56, no. 1, pp. 51–59, Jan. 2007, doi: 10.1109/TVT.2006.883735. [5] X. Ji, Z. Wei, and Y. Feng, “Effective vehicle detection technique for traffic surveillance systems,” J Vis Commun Image Represent, vol. 17, no. 3, pp. 647–658, Jun. 2006, doi: 10.1016/j.jvcir.2005.07.004. [6] M. A. A. Al-qaness, A. A. Abbasi, H. Fan, R. A. Ibrahim, S. H. Alsamhi, and A. Hawbani, “An improved YOLO-based road traffic monitoring system,” Computing, vol. 103, no. 2, pp. 211–230, Feb. 2021, doi: 10.1007/s00607-020-00869-8. [7] Z. Chen, T. Ellis, and S. A. Velastin, “Vehicle detection, tracking and classification in urban traffic,” in 2012 15th International IEEE Conference on Intelligent Transportation Systems, IEEE, Sep. 2012, pp. 951–956. doi: 10.1109/ITSC.2012.6338852. [8] Guolin Wang, Deyun Xiao, and J. Gu, “Review on vehicle detection based on video for traffic surveillance,” in 2008 IEEE International Conference on Automation and Logistics, IEEE, Sep. 2008, pp. 2961–2966. doi: 10.1109/ICAL.2008.4636684. [9] Y. Tang, C. Zhang, R. Gu, P. Li, and B. Yang, “Vehicle detection and recognition for intelligent traffic surveillance system,” Multimed Tools Appl, vol. 76, no. 4, pp. 5817– 5832, Feb. 2017, doi: 10.1007/s11042-015-2520-x. [10] J. Tao, H. Wang, X. Zhang, X. Li, and H. Yang, “An object detection system based on YOLO in traffic scene,” in 2017 6th International Conference on Computer Science and Network Technology (ICCSNT), IEEE, Oct. 2017, pp. 315–319. doi: 10.1109/ICCSNT.2017.8343709. [11] U. Mittal and P. Chawla, “Vehicle detection and traffic density estimation using ensemble of deep learning models,” Multimed Tools Appl, vol. 82, no. 7, pp. 10397–10419, Mar. 2023, doi: 10.1007/s11042-022-13659-5. [12] M. V, V. V.R, and N. A, “A Deep Learning RCNN Approach for Vehicle Recognition in Traffic Surveillance System,” in 2019 International Conference on Communication and 57 Signal Processing (ICCSP), IEEE, Apr. 2019, pp. 0157–0160. doi: 10.1109/ICCSP.2019.8698018. [13] H. Haritha and S. K. Thangavel, “A modified deep learning architecture for vehicle detection in traffic monitoring system,” International Journal of Computers and Applications, vol. 43, no. 9, pp. 968–977, Oct. 2021, doi: 10.1080/1206212X.2019.1662171. [14] M. V. Peppa, D. Bell, T. Komar, and W. Xiao, “URBAN TRAFFIC FLOW ANALYSIS BASED ON DEEP LEARNING CAR DETECTION FROM CCTV IMAGE SERIES,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII–4, pp. 499–506, Sep. 2018, doi: 10.5194/isprs-archives XLII-4-499-2018. [15] R. Carvalho Barbosa, M. Shoaib Ayub, R. Lopes Rosa, D. Zegarra Rodríguez, and L. Wuttisittikulkij, “Lightweight PVIDNet: A Priority Vehicles Detection Network Model Based on Deep Learning for Intelligent Traffic Lights,” Sensors, vol. 20, no. 21, p. 6218, Oct. 2020, doi: 10.3390/s20216218. [16] A. Moradzadeh, H. Teimourzadeh, B. Mohammadi-Ivatloo, and K. Pourhossein, “Hybrid CNN-LSTM approaches for identification of type and locations of transmission line faults,” International Journal of Electrical Power & Energy Systems, vol. 135, p. 107563, Feb. 2022, doi: 10.1016/j.ijepes.2021.107563. [17] C. M. Bautista, C. A. Dy, M. I. Manalac, R. A. Orbe, and M. Cordel, “Convolutional neural network for vehicle detection in low resolution traffic videos,” in 2016 IEEE Region 10 Symposium (TENSYMP), IEEE, May 2016, pp. 277–281. doi: 10.1109/TENCONSpring.2016.7519418. [18] S. M. Sadakatul Bari, R. Islam, and S. R. Mardia, “Performance Evaluation of Convolution Neural Network Based Object Detection Model for Bangladeshi Traffic Vehicle Detection,” 2022, pp. 115–128. doi: 10.1007/978-981-16-6636-0_10. [19] K.-J. Kim, P.-K. Kim, Y.-S. Chung, and D.-H. Choi, “Multi-Scale Detector for Accurate Vehicle Detection in Traffic Surveillance Data,” IEEE Access, vol. 7, pp. 78311–78319, 2019, doi: 10.1109/ACCESS.2019.2922479. [20] A. Corovic, V. Ilic, S. Duric, M. Marijan, and B. Pavkovic, “The Real-Time Detection of Traffic Participants Using YOLO Algorithm,” in 2018 26th Telecommunications Forum (TELFOR), IEEE, Nov. 2018, pp. 1–4. doi: 10.1109/TELFOR.2018.8611986. [21] A. Ghosh, Md. S. Sabuj, H. H. Sonet, S. Shatabda, and D. Md. Farid, “An Adaptive Video-based Vehicle Detection, Classification, Counting, and Speed-measurement System for Real-time Traffic Data Collection,” in 2019 IEEE Region 10 Symposium (TENSYMP), IEEE, Jun. 2019, pp. 541–546. doi: 10.1109/TENSYMP46218.2019.8971196. 58 [22] J. Zhu, X. Li, P. Jin, Q. Xu, Z. Sun, and X. Song, “MME-YOLO: Multi-Sensor Multi Level Enhanced YOLO for Robust Vehicle Detection in Traffic Surveillance,” Sensors, vol. 21, no. 1, p. 27, Dec. 2020, doi: 10.3390/s21010027. [23] F. J. M. , M. I. , R. A. S. , M. A. , T. Z. and N. N. I. Shamrat, “A smart automated system model for vehicles detection to maintain traffic by image processing.,” International Journal of Scientific & Technology Research, vol. 9(02), pp. 2921–2928, 2020. [24] Y.-L. Chen, B.-F. Wu, H.-Y. Huang, and C.-J. Fan, “A Real-Time Vision System for Nighttime Vehicle Detection and Traffic Surveillance,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 2030–2044, May 2011, doi: 10.1109/TIE.2010.2055771. [25] D. Mittal, A. Reddy, G. Ramadurai, K. Mitra, and B. Ravindran, “Training a deep learning architecture for vehicle detection using limited heterogeneous traffic data,” in 2018 10th International Conference on Communication Systems & Networks (COMSNETS), IEEE, Jan. 2018, pp. 589–294. doi: 10.1109/COMSNETS.2018.8328279. [26] M. M. Syeed, A. Shihavuddin, M. F. Uddin, M. Hasan, and R. H. Khan, “Outcome Based Education (OBE): Defining the Process and Practice for Engineering Education,” IEEE Access, vol. 10, pp. 119170–119192, 2022, doi: 10.1109/ACCESS.2022.3219477. [27] M. H. Davis et al., “Case studies in outcome-based education,” Med Teach, vol. 29, no. 7, pp. 717–722, Jan. 2007, doi: 10.1080/01421590701691429 |
en_US |