Hysteresis Characteristics Analysis for Ferroelectric TFTS and It’s Application to Dram

Show simple item record

dc.contributor.author Mahmud, Shah Md. Ashik
dc.contributor.author Islam, Shadid
dc.contributor.author Wornob, Shafaiet Newaz
dc.contributor.author Basher, Md.Khairul
dc.date.accessioned 2025-03-05T05:33:31Z
dc.date.available 2025-03-05T05:33:31Z
dc.date.issued 2024-06-26
dc.identifier.citation 1.Characterization and modeling of a-IGZO TFTs[1] 2. Low-frequency noise characteristics of indium-gallium-zinc oxide ferroelectric thin-film transistors with metal-ferroelectric-metal-insulator-semiconductor structure[2] 3. 2014 IEEE 6th International Memory Workshop (IMW) : Taipei, Taiwan, 18-21 May 2014.[3] 4. 2011 IEEE International Electron Devices Meeting : IEDM 2011 : Washington, DC, USA, 5-7 December 2011.[4] 5. IEEE NANO 2020 : the 20th IEEE International Conference on Nanotechnology : virtual conference, 29-31 July 2020 : proceedings.[5] 6. High performance ferroelectric ZnO thin film transistor using AlOx/HfZrO/ZrOx gate insulator by spray pyrolysis[6] 7.Ferroelectric-HfO 2 Transistor Memory with IGZO Channels.[7] 8.Improvement of Amorphous InGaZnO Thin-Film Transistor With Ferroelectric ZrOx/HfZrO Gate Insulator by 2 Step Sequential Ar/O2Treatment[8] 9. A MATLAB-based simulator for amorphous silicon and polycrystalline silicon thin film transistor[9] 10. High performance ferroelectric ZnO thin film transistor using AlOx/HfZrO/ZrOx gate insulator by spray pyrolysis[10] 11. High performance, amorphous InGaZnO thin-film transistors with ferroelectric ZrO2 gate insulator by one step annealing[11] 12. Solution processed high performance ferroelectric Hf0.5Zr0.5O2thin film transistor on glass substrate[12] 45 13Improvement of Amorphous InGaZnO Thin-Film Transistor With Ferroelectric ZrOx/HfZrO Gate Insulator by 2 Step Sequential Ar/O2Treatment[13] 14. W. Zhong, D. Vanderbilt, and K. M. Rabe, “First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO₃,” Phys. Rev. B, vol. 52, no. 9, pp. 6301- 6312, 1995. 15. R. Ramesh and N. A. Spaldin, “Multiferroics: Progress and prospects in thin films,” Nat. Mater., vol. 6, no. 1, pp. 21-29, Jan. 2007. 16. M. Dawber, K. M. Rabe, and J. F. Scott, “Physics of thin-film ferroelectric oxides,” Rev. Mod. Phys., vol. 77, no. 4, pp. 1083-1130, Oct. 2005. 17. Y. Xu, Ferroelectric Materials and Their Applications. North-Holland, 1991. 18. J. F. Scott, “Applications of modern ferroelectrics,” Science, vol. 315, no. 5814, pp. 954- 959, Feb. 2007. 19. M. G. Han, B. B. Nelson-Cheeseman, B. Hehlen, D. G. Schlom, and C. R. Ahn, “Temperature-dependent domain wall dynamics and ferroelectric switching in epitaxial PbZr₀.₂Ti₀.₈O₃ thin films,” Phys. Rev. B, vol. 81, no. 14, p. 144431, Apr. 2010. 20. D. Vanderbilt and M. H. Cohen, “Monoclinic and triclinic phases in higher-order Devonshire theory,” Phys. Rev. B, vol. 63, no. 9, p. 094108, Feb. 2001. 21. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Hong, H. Kohlstedt, N. Kingon, R. Stucki, E. Taylor, and T. Yamada, “Ferroelectric thin films: Review of materials, properties, and applications,” J. Appl. Phys., vol. 100, no. 5, p. 051606, Sep. 2006. 22. G. Arlt, D. Hennings, and G. De With, “Dielectric properties of fine-grained barium titanate ceramics,” J. Appl. Phys., vol. 58, no. 4, pp. 1619-1625, Aug. 1985. 23. S. Trolier-McKinstry and P. Muralt, “Thin film piezoelectrics for MEMS,” J. Electroceram., vol. 12, no. 1-2, pp. 7-17, 2004. 24. R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges,” Adv. Mater., vol. 21, no. 25-26, pp. 2632-2663, Jul. 2009. 25. E. V. Colla, L. K. Chao, M. B. Weissman, and D. D. Viehland, “Observation of fatigue induced nanoscale switching in lead zirconate titanate,” Appl. Phys. Lett., vol. 72, no. 22, pp. 2763-2765, Jun. 1998. 26. H. S. Lee, Y. H. Shin, S. D. Bu, R. Ramesh, and T. W. Noh, “Observation of large resistive switching in ferroelectric capacitors,” Phys. Rev. Lett., vol. 98, no. 21, p. 217602, May 2007. 27. R. Kretschmer and K. Binder, “Surface effects on phase transitions in ferroelectrics and dipolar magnets,” Phys. Rev. B, vol. 20, no. 3, pp. 1065-1076, Aug. 1979. 28. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO₃ multiferroic thin film heterostructures,” Science, vol. 299, no. 5613, pp. 1719-1722, Mar. 2003. 29. M. Dawber, “Ferroelectricity in thin films: challenges and opportunities,” J. Mater. Sci., vol. 41, no. 1, pp. 3-7, Jan. 2006. 30. A. K. Tagantsev, L. E. Cross, and J. Fousek, Domains in Ferroic Crystals and Thin Films. Springer, 2010. 31. J. Wang, H. Zheng, J. B. Neaton, V. Nagarajan, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Room-temperature multiferroicity in BiFeO₃ films,” Science, vol. 299, no. 5613, pp. 1719-1722, Mar. 2003. 46 32. T. Y. Cho, J. C. Lee, S. S. Kim, K. J. Choi, Y. S. Kim, and Y. K. Lee, “Flexible and transparent ferroelectric nanocapacitors,” Adv. Mater., vol. 27, no. 30, pp. 2200-2204, Aug. 2015. 33. J. Junquera and P. Ghosez, “First-principles study of ferroelectric oxide epitaxial thin films and superlattices: Role of the mechanical and electrical boundary conditions,” J. Comput. Phys., vol. 7, no. 5, pp. 1196-1210, 2003. 34. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials. Clarendon Press, 1977. 35. S. W. Cheong and M. Mostovoy, “Multiferroics: A magnetic twist for ferroelectricity,” Nat. Mater., vol. 6, no. 1, pp. 13-20, Jan. 2007. 36. J. F. Scott, “Ferroelectric memories,” Science, vol. 315, no. 5814, pp. 954-959, Feb. 2007. 37. M. B. Weissman, L. K. Chao, and E. V. Colla, “Fatigue in lead zirconate titanate: a possible role of oxygen vacancies,” Phys. Rev. Lett., vol. 79, no. 13, pp. 2312-2315, Sep. 1997. 38. K. Uchino, Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic Publishers, 1997. 39. J. F. Scott and C. A. Araujo, “Ferroelectric memories,” Science, vol. 246, no. 4936, pp. 1400-1405, Dec. 1989. 40. J. J. Shepard and S. L. Swisher, “Ferroelectric thin films for non-volatile memories,” Integr. Ferroelectr., vol. 6, no. 1-4, pp. 21-43, 1995. 41. K. Rabe, C. H. Ahn, and J. M. Triscone, Physics of Ferroelectrics: A Modern Perspective. Springer, 2007. 42. P. A. Thomas, “Applications of ferroelectrics: an overview,” J. Phys. D: Appl. Phys., vol. 41, no. 24, p. 243001, Dec. 2008. 43. R. E. Cohen, “Origin of ferroelectricity in perovskite oxides,” Nature, vol. 358, no. 6382, pp. 136-138, Jul. 1992. 44. J. Wang, “Multiferroic thin films and heterostructures for integrated devices,” Adv. Mater., vol. 25, no. 10, pp. 1353-1387, Mar. 2013. 45. R. H. Mitchell, Perovskites: Modern and Ancient. Almaz Press, 2002. 46. M. W. Lufaso and P. M. Woodward, “Prediction of the crystal structures of perovskites using the software program SPuDS,” Acta Crystallogr. B Struct. Sci., vol. 60, no. 1, pp. 10-20, Feb. 2004. 47. T. Tybell, C. H. Ahn, and J. M. Triscone, “Ferroelectricity in thin perovskite films,” Appl. Phys. Lett., vol. 75, no. 6, pp. 856-858, Aug. 1999. 48. H. K. Henisch, Semiconducting II-VI, III-V, and IV-VI Compounds. Wiley, 1962. 49. C. Kittel, Introduction to Solid State Physics, 8th ed. Wiley, 2004. 50. S. L. Chou, S. X. Dou, and H. K. Liu, “Biomass-derived hard-carbon anode materials: Structure, synthesis, and electrochemical performance,” Adv. Mater., vol. 26, no. 28, pp. 3873-3885, Jul. 2014. 51. D. Sando, A. Barthélémy, and M. Bibes, “BiFeO₃ epitaxial thin films and devices: Past, present and future,” J. Phys. Condens. Matter, vol. 26, no. 47, p. 473201, Nov. 2014. 52. A. K. Tagantsev, “Landau theory of phase transitions in ferroelectric thin films,” Phys. Rev. B, vol. 48, no. 6, pp. 2727-2740, Aug. 1993. 53. G. A. Rossetti, “Review of the ferroelectric phase transition in barium titanate single crystals,” J. Am. Ceram. Soc., vol. 76, no. 9, pp. 2332-2341, Sep. 1993. 54. S. B. Lang, “Pyroelectricity: From ancient curiosity to modern imaging tool,” Phys. Today, vol. 58, no. 8, pp. 31-36, Aug. 2005. 55. N. A. Hill, “Why are there so few magnetic ferroelectrics?,” J. Phys. Chem. B, vol. 104, no. 29, pp. 6694-6709, Jul. 2000. 47 56. T. Tybell, C. H. Ahn, and J. M. Triscone, “Ferroelectricity in thin perovskite films,” Appl. Phys. Lett., vol. 75, no. 6, pp. 856-858, Aug. 1999. 57. A. Gruverman, “Ferroelectric nanodomain engineering and applications,” J. Phys. Condens. Matter, vol. 20, no. 3, p. 013001, Jan. 2008. 58. D. Vanderbilt and M. H. Cohen, “Monoclinic and triclinic phases in higher-order Devonshire theory,” Phys. Rev. B, vol. 63, no. 9, p. 094108, Feb. 2001. 59. J. Junquera and P. Ghosez, “First-principles study of ferroelectric oxide epitaxial thin films,” J. Comput. Phys., vol. 7, no. 5, pp. 1196-1210, 2003. 60. W. Zhong, D. Vanderbilt, and K. M. Rabe, “First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO₃,” Phys. Rev. B, vol. 52, no. 9, pp. 6301- 6312, 1995. 61. M. Dawber, K. M. Rabe, and J. F. Scott, “Physics of thin-film ferroelectric oxides,” Rev. Mod. Phys., vol. 77, no. 4, pp. 1083-1130, Oct. 2005. 62. G. Arlt, D. Hennings, and G. De With, “Dielectric properties of fine-grained barium titanate ceramics,” J. Appl. Phys., vol. 58, no. 4, pp. 1619-1625, Aug. 1985. 63. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Hong, H. Kohlstedt, N. Kingon, R. Stucki, E. Taylor, and T. Yamada, “Ferroelectric thin films: Review of materials, properties, and applications,” J. Appl. Phys., vol. 100, no. 5, p. 051606, Sep. 2006. 64. J. Wang, H. Zheng, J. B. Neaton, V. Nagarajan, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Room-temperature multiferroicity in BiFeO₃ films,” Science, vol. 299, no. 5613, pp. 1719-1722, Mar. 2003. 65. M. Dawber, “Ferroelectricity in thin films: challenges and opportunities,” J. Mater. Sci., vol. 41, no. 1, pp. 3-7, Jan. 2006. 66. A. K. Tagantsev, L. E. Cross, and J. Fousek, Domains in Ferroic Crystals and Thin Films. Springer, 2010. 67. A. K. Tagantsev, “Landau theory of phase transitions in ferroelectric thin films,” Phys. Rev. B, vol. 48, no. 6, pp. 2727-2740, Aug. 1993. 68. S. W. Cheong and M. Mostovoy, “Multiferroics: A magnetic twist for ferroelectricity,” Nat. Mater., vol. 6, no. 1, pp. 13-20, Jan. 2007. 69. J. F. Scott, “Ferroelectric memories,” Science, vol. 315, no. 5814, pp. 954-959, Feb. 2007. 70. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO₃ multiferroic thin film heterostructures,” Science, vol. 299, no. 5613, pp. 1719-1722, Mar. 2003. 71. R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges,” Adv. Mater., vol. 21, no. 25-26, pp. 2632-2663, Jul. 2009. 72. M. G. Han, B. B. Nelson-Cheeseman, B. Hehlen, D. G. Schlom, and C. R. Ahn, “Temperature-dependent domain wall dynamics and ferroelectric switching in epitaxial PbZr₀.₂Ti₀.₈O₃ thin films,” Phys. Rev. B, vol. 81, no. 14, p. 144431, Apr. 2010. 73. E. V. Colla, L. K. Chao, M. B. Weissman, and D. D. Viehland, “Observation of fatigue induced nanoscale switching in lead zirconate titanate,” Appl. Phys. Lett., vol. 72, no. 22, pp. 2763-2765, Jun. 1998. 74. J. F. Scott, “Ferroelectric memories,” Science, vol. 315, no. 5814, pp. 954-959, Feb. 2007. 75. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Hong, H. Kohlstedt, N. Kingon, R. Stucki, E. Taylor, and T. Yamada, “Ferroelectric thin films: Review of materials, properties, and applications,” J. Appl. Phys., vol. 100, no. 5, p. 051606, Sep. 2006 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2351
dc.description Supervised by Dr. Mohammad Masum Billah, Assistant Professor, Department of Electrical and Electronic Engineering (EEE) Islamic University of Technology (IUT) Board Bazar, Gazipur, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2024 en_US
dc.description.abstract This thesis presents a brief analysis of the hysteresis characteristics of various ferroelectric materials. Ferroelectric materials shows spontaneous remanent polarization that can be modified by an external field. This property is crucial for applications in non-volatile memories, actuators, and sensors. By examining hysteresis loops, the study aims to understand the distinct behavior of ferroelectric materials under different electric fields and their impact on practical applications. Experimental and theoretical approaches are used to elucidate the mechanisms driving hysteresis in ferroelectrics, providing insights into optimizing material performance for specific applications. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Elecrtonics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Hysteresis Characteristics Analysis for Ferroelectric TFTS and It’s Application to Dram en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics