Integration of Smart IoT Energy Monitoring System for Solar Powered Microgrid: Case Study Sierra Leone

Show simple item record

dc.contributor.author Kamara, Alie Alusine
dc.contributor.author Suma, Sheku Saidu
dc.contributor.author Sillah, Abubakarr
dc.date.accessioned 2025-03-05T05:56:50Z
dc.date.available 2025-03-05T05:56:50Z
dc.date.issued 2024-06-28
dc.identifier.citation [1] S. Graber, T. Narayanan, J. Alfaro, and D. Palit, ‘Solar microgrids in rural India: Consumers’ willingness to pay for attributes of electricity’, Energy for Sustainable Development, vol. 42, pp. 32–43, Feb. 2018, doi: 10.1016/J.ESD.2017.10.002. [2] S. M. A. A. Abir, A. Anwar, J. Choi, and A. S. M. Kayes, ‘Iot-enabled smart energy grid: Applications and challenges’, IEEE Access, vol. 9, pp. 50961–50981, 2021, doi: 10.1109/ACCESS.2021.3067331. [3] J. A. Adebisi and L. N. P. Ndjuluwa, ‘A survey of power-consumption monitoring systems’, e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 7, p. 100386, Mar. 2024, doi: 10.1016/J.PRIME.2023.100386. [4] B. Radley and P. Lehmann-Grube, ‘Off-grid solar expansion and economic development in the global South: A critical review and research agenda’, Energy Res Soc Sci, vol. 89, Jul. 2022, doi: 10.1016/j.erss.2022.102673. [5] ‘Access to electricity (% of population) - Sierra Leone | Data’. Accessed: Apr. 20, 2024. [Online]. Available: https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?locations=SL [6] ‘Electricity Generation of Sierra Leone 2000-2021 | database.earth’. Accessed: Apr. 20, 2024. [Online]. Available: https://database.earth/energy/electricity-generation/sierra-leone [7] ‘Sierra Leone: $52m for large-scale grid-connected solar power IPP’. Accessed: Apr. 20, 2024. [Online]. Available: https://www.esi-africa.com/west-africa/sierra-leone-52m-for the-first-large-scale-grid-connected-solar-ipp/ [8] M. L. Tuballa and M. L. Abundo, ‘A review of the development of Smart Grid technologies’, Renewable and Sustainable Energy Reviews, vol. 59, pp. 710–725, Jun. 2016, doi: 10.1016/J.RSER.2016.01.011. [9] S. Tajjour and S. Singh Chandel, ‘A comprehensive review on sustainable energy management systems for optimal operation of future-generation of solar microgrids’, Sustainable Energy Technologies and Assessments, vol. 58, p. 103377, Aug. 2023, doi: 10.1016/J.SETA.2023.103377. [10] ‘ENERGY PROFILE Access to electricity (% population) 7.1.2 Access to clean cooking (% population) 7.2.1 Renewable energy (% TFEC)’, 2015. [11] ‘Sierra Leone: Energy Country Profile - Our World in Data’. Accessed: Jun. 15, 2024. [Online]. Available: https://ourworldindata.org/energy/country/sierra-leone [12] Y. Ledmaoui, A. El Maghraoui, M. El Aroussi, R. Saadane, A. Chebak, and A. Chehri, ‘Forecasting solar energy production: A comparative study of machine learning algorithms’, Energy Reports, vol. 10, pp. 1004–1012, Nov. 2023, doi: 10.1016/J.EGYR.2023.07.042. [13] ‘Home Energy Management Systems Market Size & Forecast, 2032’. Accessed: Jun. 09, 2024. [Online]. Available: https://www.credenceresearch.com/report/home-energy management-systems-hems-market [14] ‘Solar Microgrid Technology: How It Works & Benefits’. Accessed: Apr. 25, 2024. [Online]. Available: https://www.novergysolar.com/solar-microgrid-technology/ [15] W. Su, Z. Yuan, and M. Y. Chow, ‘Microgrid planning and operation: Solar energy and wind energy’, IEEE PES General Meeting, PES 2010, 2010, doi: 10.1109/PES.2010.5589391. 40 [16] ‘Sierra Leone’s first 5 MW solar plant powers on – pv magazine International’. Accessed: Jun. 09, 2024. [Online]. Available: https://www.pv-magazine.com/2022/12/19/sierra leones-first-5-mw-solar-plant-powers-on/ [17] L. M. Halabi and S. Mekhilef, ‘Flexible hybrid renewable energy system design for a typical remote village located in tropical climate’, J Clean Prod, vol. 177, pp. 908–924, Mar. 2018, doi: 10.1016/j.jclepro.2017.12.248. [18] J. Pan, R. Jain, S. Paul, T. Vu, A. Saifullah, and M. Sha, ‘An Internet of Things Framework for Smart Energy in Buildings: Designs, Prototype, and Experiments’, IEEE Internet Things J, vol. 2, no. 6, pp. 527–537, Dec. 2015, doi: 10.1109/JIOT.2015.2413397. [19] M. A. Hannan et al., ‘Toward Enhanced State of Charge Estimation of Lithium-ion Batteries Using Optimized Machine Learning Techniques’, Scientific Reports 2020 10:1, vol. 10, no. 1, pp. 1–15, Mar. 2020, doi: 10.1038/s41598-020-61464-7. [20] A. Mariyaraj and S. P. Thankappan, ‘IoT-integrated smart energy management system with enhanced ANN controller for small-scale microgrid’, Electrical Engineering 2024, pp. 1–35, May 2024, doi: 10.1007/S00202-024-02448-Y. [21] M. Brenna, M. Longo, W. Yaici, and T. D. Abegaz, ‘Simulation and optimization of integration of hybrid renewable energy sources and storages for remote communities electrification’, 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2017 - Proceedings, vol. 2018-January, pp. 1–6, Jul. 2017, doi: 10.1109/ISGTEUROPE.2017.8260274. [22] İ. Çetinbaş, B. Tamyürek, and M. Demirtaş, ‘Design, Analysis and Optimization of a Hybrid Microgrid System Using HOMER Software: Eskisehir Osmangazi University Example’, INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT IJRED, vol. 8, no. 1, pp. 65–79, Feb. 2019, doi: 10.14710/IJRED.8.1.65-79. [23] S. Bentouba, M. Bourouis, N. Zioui, A. Pirashanthan, and D. Velauthapillai, ‘Performance assessment of a 20 MW photovoltaic power plant in a hot climate using real data and simulation tools’, Energy Reports, vol. 7, pp. 7297–7314, Nov. 2021, doi: 10.1016/J.EGYR.2021.10.082. [24] S. W. Chisale, S. Eliya, and J. Taulo, ‘Optimization and design of hybrid power system using HOMER pro and integrated CRITIC-PROMETHEE II approaches’, Green Technologies and Sustainability, vol. 1, no. 1, p. 100005, Jan. 2023, doi: 10.1016/J.GRETS.2022.100005. [25] G. J. May, A. Davidson, and B. Monahov, ‘Lead batteries for utility energy storage: A review’, J Energy Storage, vol. 15, pp. 145–157, Feb. 2018, doi: 10.1016/J.EST.2017.11.008. [26] B. B. Adetokun, C. M. Muriithi, J. O. Ojo, and O. Oghorada, ‘Impact assessment of increasing renewable energy penetration on voltage instability tendencies of power system buses using a QV-based index’, Scientific Reports 2023 13:1, vol. 13, no. 1, pp. 1–16, Jun. 2023, doi: 10.1038/s41598-023-36843-5. [27] L. Khalil, K. Liaquat Bhatti, M. Arslan Iqbal Awan, M. Riaz, K. Khalil, and N. Alwaz, ‘Optimization and designing of hybrid power system using HOMER pro’, Mater Today Proc, vol. 47, pp. S110–S115, Jan. 2021, doi: 10.1016/J.MATPR.2020.06.054. [28] N. M. Swarnkar, L. Gidwani, and R. Sharma, ‘An application of HOMER Pro in optimization of hybrid energy system for electrification of technical institute’, 2016 41 International Conference on Energy Efficient Technologies for Sustainability, ICEETS 2016, pp. 56–61, Oct. 2016, doi: 10.1109/ICEETS.2016.7582899. [29] R. L. Dash, L. Behera, B. Mohanty, and P. Kumar Hota, ‘Cost and sensitivity analysis of a microgrid using HOMER-Pro software in both grid connected and standalone mode’, 2018 International Conference on Recent Innovations in Electrical, Electronics and Communication Engineering, ICRIEECE 2018, pp. 3444–3449, Jul. 2018, doi: 10.1109/ICRIEECE44171.2018.9009218. [30] D. B. Avancini, J. J. P. C. Rodrigues, R. A. L. Rabêlo, A. K. Das, S. Kozlov, and P. Solic, ‘A new IoT-based smart energy meter for smart grids’, Int J Energy Res, vol. 45, no. 1, pp. 189–202, Jan. 2021, doi: 10.1002/ER.5177. [31] B. K. Barman, S. N. Yadav, S. Kumar, and S. Gope, ‘IOT Based Smart Energy Meter for Efficient Energy Utilization in Smart Grid’, 2nd International Conference on Energy, Power and Environment: Towards Smart Technology, ICEPE 2018, Jul. 2018, doi: 10.1109/EPETSG.2018.8658501. [32] M. Sengupta, Y. Xie, A. Lopez, A. Habte, G. Maclaurin, and J. Shelby, ‘The National Solar Radiation Data Base (NSRDB)’, Renewable and Sustainable Energy Reviews, vol. 89, pp. 51–60, Jun. 2018, doi: 10.1016/J.RSER.2018.03.003. [33] L. M. Halabi and S. Mekhilef, ‘Flexible hybrid renewable energy system design for a typical remote village located in tropical climate’, J Clean Prod, vol. 177, pp. 908–924, Mar. 2018, doi: 10.1016/J.JCLEPRO.2017.12.248. [34] ‘Sierra Leone weather by month: monthly climate averages’. Accessed: Jun. 12, 2024. [Online]. Available: https://www.weather2travel.com/sierra-leone/climate/ [35] S. E. Bibri, ‘The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability’, Sustain Cities Soc, vol. 38, pp. 230–253, Apr. 2018, doi: 10.1016/J.SCS.2017.12.034. [36] B. K. Barman, S. N. Yadav, S. Kumar, and S. Gope, ‘IOT Based Smart Energy Meter for Efficient Energy Utilization in Smart Grid’, 2nd International Conference on Energy, Power and Environment: Towards Smart Technology, ICEPE 2018, Jul. 2018, doi: 10.1109/EPETSG.2018.8658501. [37] B. Kroposki, R. Lasseter, T. Ise, S. Morozumi, S. Papathanassiou, and N. Hatziargyriou, ‘Making microgrids work’, IEEE Power and Energy Magazine, vol. 6, no. 3, pp. 40–53, May 2008, doi: 10.1109/MPE.2008.918718. [38] G. Strbac, N. Hatziargyriou, J. P. Lopes, C. Moreira, A. Dimeas, and D. Papadaskalopoulos, ‘Microgrids: Enhancing the resilience of the European megagrid’, IEEE Power and Energy Magazine, vol. 13, no. 3, pp. 35–43, May 2015, doi: 10.1109/MPE.2015.2397336. [39] A. D. Nguyen, V. H. Bui, A. Hussain, D. H. Nguyen, and H. M. Kim, ‘Impact of demand response programs on optimal operation of multi-microgrid system’, Energies (Basel), vol. 11, no. 6, Jun. 2018, doi: 10.3390/EN11061452. [40] T. Ahmad and D. Zhang, ‘Using the internet of things in smart energy systems and networks’, Sustain Cities Soc, vol. 68, p. 102783, May 2021, doi: 10.1016/J.SCS.2021.102783. [41] T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. da P. Francisco, J. P. Basto, and S. G. S. Alcalá, ‘A systematic literature review of machine learning methods applied to predictive maintenance’, Comput Ind Eng, vol. 137, p. 106024, Nov. 2019, doi: 10.1016/J.CIE.2019.106024 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2353
dc.description Supervised by Dr. Khondokhar Habib Kabir , Professor, Department of Electrical and Electronic Engineering (EEE) Islamic University of Technology (IUT) Board Bazar, Gazipur, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2024 en_US
dc.description.abstract A smart IoT energy monitoring system for a solar-powered microgrid in Sierra Leone is implemented and presented in this study. Microgrids that are powered by solar energy have emerged as a promising approach to address the issues of consistent and sustainable energy availability in developing countries, especially in rural places[1]. For these microgrids to operate as best they can, however, effective resource management and monitoring are necessary. Here, we use Internet of Things (IoT) technology and Homer Pro software to create and install an advanced energy monitoring system. Homer Pro software is used for system design, optimization, and simulation, and it is integrated with Internet of Things (IoT) devices for data collecting, transfer, and analysis[2]. Real-time data on energy production, use, and storage is provided by the energy monitoring system. It also has an easy-to-use interface for controlling and monitoring in real-time. Users can monitor energy usage, spot inefficiencies, and optimize energy consumption thanks to the system's remote monitoring and control capabilities[3]. In this study, we examine viable substitutes for traditional power generating systems with the goal of delivering electricity in a cost-effective, dependable, and sustainable way. These substitutes include the utilization of solar renewable energy sources and less carbon-intensive technology. In addition, the study addresses the scalability, future prospects, and socioeconomic effects of smart IoT energy monitoring systems in relation to sustainable development[4]. In summary, this study advances the use of IoT applications in energy systems and provides workable solutions to improve resilience, efficiency, and access to energy in Sierra Leone. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Elecrtonics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Integration of Smart IoT Energy Monitoring System for Solar Powered Microgrid: Case Study Sierra Leone en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics