dc.identifier.citation |
[1] A. Agrawal, D. Batra, and D. Parikh, “Analyzing the behavior of visual question answering models,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, J. Su, K. Duh, and X. Carreras, Eds., Austin, Texas: Association for Computational Linguistics, Nov. 2016, pp. 1955–1960. doi: 10.18653/v1/D16-1203. [Online]. Available: https://aclanthology. org/D16-1203. [2] T. Alhindi, S. Petridis, and S. Muresan, “Where is your evidence: Improving fact-checking by justification modeling,” in Proceedings of the First Workshop on Fact Extraction and VERification (FEVER), J. Thorne, A. Vlachos, O. Cocarascu, C. Christodoulopoulos, and A. Mittal, Eds., Brussels, Belgium: Association for Computational Linguistics, Nov. 2018, pp. 85–90. doi: 10 . 18653 / v1 / W18 - 5513. [Online]. Available: https://aclanthology.org/W18-5513. [3] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, Oct. 2001. doi: 10.1023/A:1010950718922. [4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings of the 2019 Conference of the North American Chapter of the Association for Compu tational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds., Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 4171–4186. doi: 10. 18653/v1/N19-1423. [Online]. Available: https://aclanthology.org/N19- 1423. [5] Z. Guo, M. Schlichtkrull, and A. Vlachos, “A survey on automated fact-checking,” Transactions of the Association for Computational Linguistics, vol. 10, B. Roark and A. Nenkova, Eds., pp. 178–206, 2022. doi: 10.1162/tacl_a_00454. [On line]. Available: https://aclanthology.org/2022.tacl-1.11. [6] C. Hansen, C. Hansen, and L. Chaves Lima, “Automatic fake news detection: Are models learning to reason?” In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), C. Zong, F. Xia, W. Li, and R. Navigli, Eds., Online: Association for Computational Lin 31 guistics, Aug. 2021, pp. 80–86. doi: 10.18653/v1/2021.acl-short.12. [On line]. Available: https://aclanthology.org/2021.acl-short.12. [7] H. Karimi, P. Roy, S. Saba-Sadiya, and J. Tang, “Multi-source multi-class fake news detection,” in Proceedings of the 27th International Conference on Com putational Linguistics, E. M. Bender, L. Derczynski, and P. Isabelle, Eds., Santa Fe, New Mexico, USA: Association for Computational Linguistics, Aug. 2018, pp. 1546–1557. [Online]. Available: https://aclanthology.org/C18-1131. [8] N. Kotonya and F. Toni, “Explainable automated fact-checking for public health claims,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), B. Webber, T. Cohn, Y. He, and Y. Liu, Eds., Online: Association for Computational Linguistics, Nov. 2020, pp. 7740–7754. doi: 10.18653/v1/2020.emnlp- main.623. [Online]. Available: https:// aclanthology.org/2020.emnlp-main.623. [9] J. A. Leite, O. Razuvayevskaya, K. Bontcheva, and C. Scarton, Detecting mis information with llm-predicted credibility signals and weak supervision, 2023. arXiv: 2309.07601 [cs.CL]. [10] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in Text Summarization Branches Out, Barcelona, Spain: Association for Computational Linguistics, Jul. 2004, pp. 74–81. [Online]. Available: https://aclanthology. org/W04-1013. [11] Y. Long, Q. Lu, R. Xiang, M. Li, and C.-R. Huang, “Fake news detection through multi-perspective speaker profiles,” in Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), G. Kondrak and T. Watanabe, Eds., Taipei, Taiwan: Asian Federation of Natural Language Processing, Nov. 2017, pp. 252–256. [Online]. Available: https:// aclanthology.org/I17-2043. [12] K. Popat, S. Mukherjee, J. Strötgen, and G. Weikum, “Where the truth lies: Ex plaining the credibility of emerging claims on the web and social media,” Apr. 2017. doi: 10.1145/3041021.3055133. [13] H. Rashkin, E. Choi, J. Y. Jang, S. Volkova, and Y. Choi, “Truth of varying shades: Analyzing language in fake news and political fact-checking,” in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, M. Palmer, R. Hwa, and S. Riedel, Eds., Copenhagen, Denmark: Association for Computational Linguistics, Sep. 2017, pp. 2931–2937. doi: 10.18653/v1/D17- 1317. [Online]. Available: https://aclanthology.org/D17-1317. [14] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using Siamese BERT-networks,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on 32 Natural Language Processing (EMNLP-IJCNLP), K. Inui, J. Jiang, V. Ng, and X. Wan, Eds., Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 3982–3992. doi: 10.18653/v1/D19-1410. [Online]. Available: https://aclanthology.org/D19-1410. [15] A. Roberts, C. Raffel, and N. Shazeer, “How much knowledge can you pack into the parameters of a language model?” In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), B. Webber, T. Cohn, Y. He, and Y. Liu, Eds., Online: Association for Computational Linguis tics, Nov. 2020, pp. 5418–5426. doi: 10.18653/v1/2020.emnlp- main.437. [Online]. Available: https://aclanthology.org/2020.emnlp-main.437. [16] J. Thorne and A. Vlachos, “Automated fact checking: Task formulations, meth ods and future directions,” in Proceedings of the 27th International Conference on Computational Linguistics, E. M. Bender, L. Derczynski, and P. Isabelle, Eds., Santa Fe, New Mexico, USA: Association for Computational Linguistics, Aug. 2018, pp. 3346–3359. [Online]. Available: https://aclanthology.org/C18- 1283. [17] W. Y. Wang, ““liar, liar pants on fire”: A new benchmark dataset for fake news detection,” in Proceedings of the 55th Annual Meeting of the Association for Com putational Linguistics (Volume 2: Short Papers), R. Barzilay and M.-Y. Kan, Eds., Vancouver, Canada: Association for Computational Linguistics, Jul. 2017, pp. 422– 426. doi: 10.18653/v1/P17-2067. [Online]. Available: https://aclanthology. org/P17-2067. [18] J. Wu and B. Hooi, “Fake News in Sheep’s Clothing: Robust Fake News Detec tion Against LLM-Empowered Style Attacks,” arXiv e-prints, arXiv:2310.10830, arXiv:2310.10830, Oct. 2023. doi: 10.48550/arXiv.2310.10830. arXiv: 2310. 10830 [cs.CL]. [19] F. Yang, S. K. Pentyala, S. Mohseni, et al., “Xfake: Explainable fake news de tector with visualizations,” in The World Wide Web Conference, ser. WWW ’19, ACM, May 2019. doi: 10.1145/3308558.3314119. [Online]. Available: http: //dx.doi.org/10.1145/3308558.3314119. [20] Z. Yang, J. Ma, H. Chen, H. Lin, Z. Luo, and Y. Chang, “A coarse-to-fine cas caded evidence-distillation neural network for explainable fake news detec tion,” in Proceedings of the 29th International Conference on Computational Lin guistics, N. Calzolari, C.-R. Huang, H. Kim, et al., Eds., Gyeongju, Republic of Korea: International Committee on Computational Linguistics, Oct. 2022, pp. 2608–2621. [Online]. Available: https : / / aclanthology . org / 2022 . coling-1.230. |
en_US |