dc.identifier.citation |
[1] J. Chen, Y. Lu, H. Lin, et al., Learning in-context learning for named entity recog nition, 2023. arXiv: 2305.11038 [cs.CL]. [Online]. Available: https://arxiv. org/abs/2305.11038. [2] X. Chen, K. Li, T. Song, and J. Guo, “Few-shot name entity recognition on stack overflow,” arXiv, vol. cs.CL, cs.AI, p. 5, Apr. 2024, arXiv:2404.09405 [pdf, other]. [3] S. S. S. Das, A. Katiyar, R. J. Passonneau, and R. Zhang, Container: Few-shot named entity recognition via contrastive learning, 2022. arXiv: 2109.07589 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2109.07589. [4] N. Ding, G. Xu, Y. Chen, et al., “Few-NERD: A few-shot named entity recogni tion dataset,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Nat ural Language Processing (Volume 1: Long Papers), C. Zong, F. Xia, W. Li, and R. Navigli, Eds., Online: Association for Computational Linguistics, Aug. 2021, pp. 3198–3213. doi: 10.18653/v1/2021.acl-long.248. [Online]. Available: https://aclanthology.org/2021.acl-long.248. [5] E. V. Epure and R. Hennequin, Probing pre-trained auto-regressive language models for named entity typing and recognition, 2022. arXiv: 2108.11857 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2108.11857. [6] Y. Ge, S. Das, K. O’Connor, M. A. Al-Garadi, G. Gonzalez-Hernandez, and A. Sarker, “Reddit-impacts: A named entity recognition dataset for analyzing clini cal and social effects of substance use derived from social media,” arXiv, vol. cs.CL, cs.AI, cs.LG, p. 7, May 2024, arXiv:2405.06145 [pdf, other]. [7] M. Z. Haque, S. Zaman, J. R. Saurav, S. Haque, M. S. Islam, and M. R. Amin, “B-ner: A novel bangla named entity recognition dataset with largest entities and its baseline evaluation,” IEEE Access, vol. 11, pp. 45 194–45 205, 2023. doi: 10.1109/ACCESS.2023.3267746. [8] B. Jehangir, S. Radhakrishnan, and R. Agarwal, “A survey on named entity recognition —datasets, tools, and methodologies,” Natural Language Process ing Journal, vol. 3, p. 100 017, 2023, issn: 2949-7191. doi: https : / / doi . 40 org / 10 . 1016 / j . nlp . 2023 . 100017. [Online]. Available: https : / / www . sciencedirect.com/science/article/pii/S2949719123000146. [9] H. Kim, J. Yoo, S. Yoon, J. Lee, and J. Kang, Simple questions generate named en tity recognition datasets, 2022. arXiv: 2112.08808 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2112.08808. [10] P. Lai, F. Ye, L. Zhang, et al., “PCBERT: Parent and child BERT for Chinese few-shot NER,” in Proceedings of the 29th International Conference on Computa tional Linguistics, N. Calzolari, C.-R. Huang, H. Kim, et al., Eds., Gyeongju, Re public of Korea: International Committee on Computational Linguistics, Oct. 2022, pp. 2199–2209. [Online]. Available: https://aclanthology.org/2022. coling-1.192. [11] J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for named entity recognition,” IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 1, pp. 50–70, Jan. 2022,issn: 2326-3865. doi: 10.1109/tkde.2020.2981314. [Online]. Available: http://dx.doi.org/10.1109/TKDE.2020.2981314. [12] Y. Li, Y. Yu, and T. Qian, Type-aware decomposed framework for few-shot named entity recognition, 2023. arXiv: 2302.06397 [cs.CL]. [Online]. Available: https: //arxiv.org/abs/2302.06397. [13] A. T. Liu, W. Xiao, H. Zhu, D. Zhang, S.-W. Li, and A. Arnold, Qaner: Prompting question answering models for few-shot named entity recognition, 2022. arXiv: 2203.01543 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2203. 01543. [14] P. Liu, G. Wang, Y. Tong, J. Liang, Z. Ding, and H. Zhu, “Hybrid multi-stage de coding for few-shot ner with entity-aware contrastive learning,” arXiv, vol. cs.CL, arXiv:2404.06970 [pdf, other], Apr. 2024. [15] J. Ma, M. Ballesteros, S. Doss, et al., Label semantics for few shot named entity recognition, 2022. arXiv: 2203.08985 [cs.CL]. [Online]. Available: https:// arxiv.org/abs/2203.08985. [16] R. Ma, X. Zhou, T. Gui, et al., “Template-free prompt tuning for few-shot NER,” in Proceedings of the 2022 Conference of the North American Chapter of the Asso ciation for Computational Linguistics: Human Language Technologies, M. Carpuat, M.-C. de Marneffe, and I. V. Meza Ruiz, Eds., Seattle, United States: Association for Computational Linguistics, Jul. 2022, pp. 5721–5732. doi: 10.18653/v1/ 2022.naacl- main.420. [Online]. Available: https://aclanthology.org/ 2022.naacl-main.420. 41 [17] T. Ma, H. Jiang, Q. Wu, T. Zhao, and C.-Y. Lin, Decomposed meta-learning for few-shot named entity recognition, 2022. arXiv: 2204.05751 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2204.05751. [18] M. Monajatipoor, J. Yang, J. Stremmel, et al., “Llms in biomedicine: A study on clinical named entity recognition,” arXiv, vol. cs.CL, arXiv:2404.07376 [pdf, other], Apr. 2024. [19] K. Pakhale,Comprehensive overview of named entity recognition: Models, domain specific applications and challenges, 2023. arXiv: 2309 . 14084 [cs.CL]. [On line]. Available: https://arxiv.org/abs/2309.14084. [20] A. Roy, Recent trends in named entity recognition (ner), 2021. arXiv: 2101.11420 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2101.11420. [21] M. Tong, S. Wang, B. Xu, et al., Learning from miscellaneous other-class words for few-shot named entity recognition, 2021. arXiv: 2106.15167 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2106.15167. [22] G. Wang, Y. Liu, and J. Hearne, “Few-shot learning for Sumerian named en tity recognition,” in Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing, C. Cherry, A. Fan, G. Foster, et al., Eds., Hybrid: Association for Computational Linguistics, Jul. 2022, pp. 136– 145. doi: 10 . 18653 / v1 / 2022 . deeplo - 1 . 15. [Online]. Available: https : //aclanthology.org/2022.deeplo-1.15. [23] L. Wang, R. Li, Y. Yan, et al., Instructionner: A multi-task instruction-based gen erative framework for few-shot ner, 2022. arXiv: 2203.03903 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2203.03903. [24] P. Wang, R. Xu, T. Liu, et al., An enhanced span-based decomposition method for few-shot sequence labeling, 2022. arXiv: 2109.13023 [cs.CL]. [Online]. Avail able: https://arxiv.org/abs/2109.13023. [25] Z. Wang, K. Zhao, Z. Wang, and J. Shang, Formulating few-shot fine-tuning to wards language model pre-training: A pilot study on named entity recognition, 2022. arXiv: 2205.11799 [cs.CL]. [Online]. Available: https://arxiv.org/ abs/2205.11799. [26] H. Yan, B. Deng, X. Li, and X. Qiu, “TENER: adapting transformer encoder for named entity recognition,” CoRR, vol. abs/1911.04474, 2019. arXiv: 1911. 04474. [Online]. Available: http://arxiv.org/abs/1911.04474. [27] Y. Yang and A. Katiyar, Simple and effective few-shot named entity recognition with structured nearest neighbor learning, 2020. arXiv: 2010 . 02405 [cs.CL]. [Online]. Available: https://arxiv.org/abs/2010.02405. 42 [28] H. Zhang and Y. Zhuang, “A unified label-aware contrastive learning frame work for few-shot named entity recognition,” arXiv, vol. cs.CL, arXiv:2404.17178 [pdf, other], May 2024. [29] Y. Zhang and J. Yang, “Chinese NER using lattice LSTM,”CoRR, vol. abs/1805.02023, 2018. arXiv: 1805.02023. [Online]. Available: http://arxiv.org/abs/1805. 02023. [30] D. Zhou, S. Li, Q. Chen, and H. Yao, “Improving few-shot named entity recogni tion via semantics induced optimal transport,” Neurocomputing, vol. 597, p. 127 938, 2024, issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2024. 127938. [Online]. Available: https://www.sciencedirect.com/science/ article/pii/S0925231224007094. |
en_US |