| Login
dc.contributor.author | Fardin, Mahtab Nur | |
dc.contributor.author | Rafio, Md. Irfanur Rahman | |
dc.contributor.author | Islam, Md. Jubayer | |
dc.date.accessioned | 2025-03-10T05:16:44Z | |
dc.date.available | 2025-03-10T05:16:44Z | |
dc.date.issued | 2024-08-30 | |
dc.identifier.citation | [1] S. Afzal, M. Maqsood, U. Khan, et al., “Alzheimer disease detection techniques and methods: A review,” 2021. [2] J. Arslan, H. Jamshed, and H. Qureshi, “Early detection and prevention of alzheimer’s disease: Role of oxidative markers and natural antioxidants,” Frontiers in Aging Neuroscience, vol. 12, 2020, issn: 1663-4365. doi: 10 . 3389 / fnagi . 2020 . 00231. [Online]. Available: https : / / www . frontiersin . org / journals / aging - neuroscience/articles/10.3389/fnagi.2020.00231. [3] J. Ashburner and K. J. Friston, “Voxel-based morphometry—the methods,” NeuroImage, vol. 11, no. 6, pp. 805–821, 2000, issn: 1053-8119. doi: https://doi.org/10.1006/nimg.2000.0582. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S1053811900905822. [4] M. Basso, J. Yang, L. Warren, et al., “Volumetry of amygdala and hippocampus and memory performance in alzheimer’s disease,” Psychiatry Research: Neuroimaging, vol. 146, no. 3, pp. 251–261, 2006, issn: 0925-4927. [Online]. Available: https : //www.sciencedirect.com/science/article/pii/S0925492706000084. [5] D. L. Beekly, E. M. Ramos, W. W. Lee, et al., “The national alzheimer’s coor dinating center (nacc) database: The uniform data set,” Alzheimer Disease & Associated Disorders, vol. 21, no. 3, pp. 249–258, 2007. [6] M. Brett, I. S. Johnsrude, and A. M. Owen, “The problem of functional localiza tion in the human brain,” Nature Reviews Neuroscience, vol. 3, no. 3, pp. 243– 249, 2002. [7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition, Ieee, 2009, pp. 248–255. [8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., An image is worth 16x16 words: Transformers for image recognition at scale, 2021. arXiv: 2010.11929 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2010.11929. 60 [9] A. Ebrahimi, S. Luo, and A. D. N. Initiative, “Convolutional neural networks for Alzheimer’s disease detection on MRI images,” Journal of Medical Imaging, vol. 8, no. 2, p. 024 503, 2021. doi: 10.1117/1.JMI.8.2.024503. [Online]. Available: https://doi.org/10.1117/1.JMI.8.2.024503. [10] K. A. Ellis, A. I. Bush, D. Darby, et al., “The australian imaging, biomarkers and lifestyle (aibl) study of aging: Methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of alzheimer’s disease,” In ternational Psychogeriatrics, vol. 21, no. 4, pp. 672–687, 2009. doi: 10 . 1017 / S1041610209009405. [11] B. Fischl, “Freesurfer,” NeuroImage, vol. 62, no. 2, pp. 774–781, 2012, 20 YEARS OF fMRI, issn: 1053-8119. doi: https://doi.org/10.1016/j.neuroimage. 2012 . 01 . 021. [Online]. Available: https : / / www . sciencedirect . com / science/article/pii/S1053811912000389. [12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog nition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. [13] H. A. Helaly, M. Badawy, and A. Y. Haikal, “Deep learning approach for early detection of alzheimer’s disease,” Cognitive computation, vol. 14, no. 5, pp. 1711–1727, 2022. [14] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con nected convolutional networks,” in Proceedings of the IEEE Conference on Com puter Vision and Pattern Recognition, 2017, pp. 4700–4708. [15] C. R. Jack Jr., M. A. Bernstein, N. C. Fox, et al., “The alzheimer’s disease neu roimaging initiative (adni): Mri methods,” Journal of Magnetic Resonance Imag ing, vol. 27, no. 4, pp. 685–691, 2008. doi: https://doi.org/10.1002/jmri. 21049. eprint: https : / / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / jmri.21049. [Online]. Available: https://onlinelibrary.wiley.com/doi/ abs/10.1002/jmri.21049. [16] J. Jang and D. Hwang, “M3t: Three-dimensional medical image classifier us ing multi-plane and multi-slice transformer,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 20 718–20 729. [17] J. Kim, M. Jeong, W. R. Stiles, and H. S. Choi, “Neuroimaging modalities in alzheimer’s disease: Diagnosis and clinical features,” International Journal of Molecular Sciences, vol. 23, no. 11, p. 6079, 2022. doi: 10.3390/ijms23116079. [Online]. Available: https://doi.org/10.3390/ijms23116079. [18] R. Kushol, A. Masoumzadeh, D. Huo, S. Kalra, and Y.-H. Yang, “Addformer: Alzheimer’s disease detection from structural mri using fusion transformer,” in 61 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1–5. doi: 10.1109/ISBI52829.2022.9761421. [19] L. Liu, S. Liu, L. Zhang, X. V. To, F. Nasrallah, and S. S. Chandra, “Cascaded multi-modal mixing transformers for alzheimer’s disease classification with in complete data,” NeuroImage, vol. 277, p. 120 267, 2023, issn: 1053-8119. doi: https : / / doi . org / 10 . 1016 / j . neuroimage . 2023 . 120267. [Online]. Available: https : / / www . sciencedirect . com / science / article / pii / S1053811923004184. [20] S. Liu, S. Liu, W. Cai, S. Pujol, R. Kikinis, and D. Feng, “Early diagnosis of alzheimer’s disease with deep learning,” in 2014 IEEE 11th International Sym posium on Biomedical Imaging (ISBI), 2014, pp. 1015–1018. doi: 10 . 1109 / ISBI.2014.6868045. [21] A. Loddo, S. Buttau, and C. Di Ruberto, “Deep learning based pipelines for alzheimer’s disease diagnosis: A comparative study and a novel deep-ensemble method,” Computers in Biology and Medicine, vol. 141, p. 105 032, 2022, issn: 0010-4825. doi: https://doi.org/10.1016/j.compbiomed.2021.105032. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S001048252100826X. [22] D. S. Marcus, A. F. Fotenos, J. G. Csernansky, J. C. Morris, and R. L. Buckner, “Open Access Series of Imaging Studies: Longitudinal MRI Data in Nonde mented and Demented Older Adults,” Journal of Cognitive Neuroscience, vol. 22, no. 12, pp. 2677–2684, Dec. 2010, issn: 0898-929X. doi: 10.1162/jocn.2009. 21407. eprint: https://direct.mit.edu/jocn/article-pdf/22/12/2677/ 1940172/jocn.2009.21407.pdf. [Online]. Available: https://doi.org/10. 1162/jocn.2009.21407. [23] J. C. Morris, M. Storandt, J. P. Miller, et al., “Mild Cognitive Impairment Rep resents Early-Stage Alzheimer Disease,” Archives of Neurology, vol. 58, no. 3, pp. 397–405, Mar. 2001, issn: 0003-9942. doi: 10.1001/archneur.58.3.397. eprint: https://jamanetwork.com/journals/jamaneurology/articlepdf/ 778838 / noc00280 . pdf. [Online]. Available: https : / / doi . org / 10 . 1001 / archneur.58.3.397. [24] K. O’Shea and R. Nash, An introduction to convolutional neural networks, 2015. arXiv: 1511.08458 [cs.NE]. [Online]. Available: https://arxiv.org/abs/ 1511.08458. [25] M. Odusami, R. Maskeliunas, and R. Damaševičius, “Pixel-level fusion ¯ approach with vision transformer for early detection of alzheimer’s disease,” Electronics, vol. 12, no. 5, 2023, issn: 2079-9292. doi: 10 . 3390 / electronics12051218. [Online]. Available: https://www.mdpi.com/2079-9292/12/5/1218. 62 [26] V. Patil, M. Madgi, and A. Kiran, “Early prediction of alzheimer’s disease using convolutional neural network: A review,” The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, vol. 58, no. 1, Article 130, 2022. doi: 10.1186/ s41983-022-00515-w. [Online]. Available: https://ejnpn.springeropen. com/articles/10.1186/s41983-022-00515-w. [27] A. Payan and G. Montana, “Predicting alzheimer’s disease: A neuroimaging study with 3d convolutional neural networks,”CoRR, vol. abs/1502.02506, 2015. arXiv: 1502.02506. [Online]. Available: http://arxiv.org/abs/1502.02506. [28] R. D. Piovezan, D. Oliveira, N. Arias, D. Acosta, M. J. Prince, and C. P. Ferri, “Mortality rates and mortality risk factors in older adults with dementia from low-and middle-income countries: The 10/66 dementia research group population-based cohort study,” Journal of Alzheimer’s Disease, vol. 75, no. 2, pp. 581–593, 2020. [29] S. Qiu, P. S. Joshi, M. I. Miller, et al., “Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification,” Brain, vol. 143, no. 6, pp. 1920–1933, May 2020, issn: 0006-8950. doi: 10 . 1093 / brain / awaa137. eprint: https : / / academic . oup . com / brain / article - pdf / 143 / 6 / 1920 / 33446057 / awaa137 . pdf. [Online]. Available: https://doi.org/10.1093/brain/awaa137. [30] S. Qiu, M. I. Miller, P. S. Joshi, et al., “Multimodal deep learning for alzheimer’s disease dementia assessment,” Nature communications, vol. 13, no. 1, p. 3404, 2022. [31] P. M. Raees and V. Thomas, “Automated detection of alzheimer’s disease using deep learning in mri,” in Journal of Physics: Conference Series, IOP Publishing, vol. 1921, 2021, p. 012 024. [32] A. W. Saleh, G. Gupta, S. B. Khan, N. A. Alkhaldi, and A. Verma, “An alzheimer’s disease classification model using transfer learning densenet with embedded healthcare decision support system,” Decision Analytics Journal, vol. 9, p. 100 348, 2023, issn: 2772-6622. doi: https://doi.org/10.1016/j.dajour.2023.100348. [Online]. Available: https : //www.sciencedirect.com/science/article/pii/S2772662223001881. [33] S. Savaş, “Detecting the stages of alzheimer’s disease with pre-trained deep learning architectures,” Arabian Journal for Science and Engineering, vol. 47, no. 2, pp. 2201–2218, 2022. [34] F. J. M. Shamrat, S. Akter, S. Azam, et al., “Alzheimernet: An effective deep learning based proposition for alzheimer’s disease stages classification from 63 functional brain changes in magnetic resonance images,” IEEE Access, vol. 11, pp. 16 376–16 395, 2023. [35] F. Shamshad, S. Khan, S. W. Zamir, et al., “Transformers in medical imaging: A survey,” Medical Image Analysis, vol. 88, p. 102 802, 2023, issn: 1361-8415. doi: https : / / doi . org / 10 . 1016 / j . media . 2023 . 102802. [Online]. Available: https : //www.sciencedirect.com/science/article/pii/S1361841523000634. [36] D. W. Shattuck and R. M. Leahy, “Brainsuite: An automated cortical surface identification tool,” Medical Image Analysis, vol. 6, no. 2, pp. 129–142, 2002, issn: 1361-8415. doi: https://doi.org/10.1016/S1361-8415(02)00054-3. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S1361841502000543. [37] S. M. Smith, “Fast robust automated brain extraction,” Human Brain Mapping, vol. 17, no. 3, pp. 143–155, 2002. doi: https://doi.org/10.1002/hbm.10062. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.10062. [Online]. Available: https : / / onlinelibrary . wiley . com / doi / abs / 10 . 1002/hbm.10062. [38] J. Song, J. Zheng, P. Li, X. Lu, G. Zhu, and P. Shen, “An effective multimodal image fusion method using mri and pet for alzheimer’s disease diagnosis,” Frontiers in Digital Health, vol. 3, 2021, issn: 2673-253X. doi: 10 . 3389 / fdgth . 2021 . 637386. [Online]. Available: https : / / www . frontiersin . org / journals / digital - health/articles/10.3389/fdgth.2021.637386. [39] S. Teipel, A. Drzezga, M. J. Grothe, et al., “Multimodal imaging in alzheimer’s disease: Validity and usefulness for early detection,” The Lancet Neurology, vol. 14, no. 10, pp. 1037–1053, 2015, issn: 1474-4422. doi: https://doi.org/10.1016/S1474-4422(15)00093-9. [Online]. Available: https : //www.sciencedirect.com/science/article/pii/S1474442215000939. [40] N. J. Tustison, B. B. Avants, P. A. Cook, et al., “N4itk: Improved n3 bias cor rection,” IEEE Transactions on Medical Imaging, vol. 29, no. 6, pp. 1310–1320, 2010. doi: 10.1109/TMI.2010.2046908. [41] Z. Zhao, J. H. Chuah, K. W. Lai, et al., “Conventional machine learning and deep learning in alzheimer’s disease diagnosis using neuroimaging: A review,” Frontiers in Computational Neuroscience, vol. 17, 2023, issn: 1662-5188. doi: 10 . 3389 / fncom . 2023 . 1038636. [Online]. Available: https : / / www . frontiersin . org / journals / computational - neuroscience/articles/10.3389/fncom.2023.1038636. | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/2366 | |
dc.description | Supervised by Dr. Md. Hasanul Kabir, Professor, Mr. Sabbir Ahmed, Assistant Professor, Department of Computer Science and Engineering (CSE) Islamic University of Technology (IUT) Board Bazar, Gazipur, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Computer Science and Engineering, 2024 | en_US |
dc.description.abstract | Alzheimer’s disease (AD) is a chronic neurodegenerative condition that progressively damages brain cells, resulting in memory and cognitive decline and eventually imped ing basic functionalities. With over 55 million people worldwide affected by demen tia, a number anticipated to rise significantly, the urgency for early diagnosis becomes paramount. While a definitive cure remains elusive, early intervention is crucial in mitigating disease progression and enhancing patient outcomes. This research inves tigates the potential of deep learning models for classifying Alzheimer’s Disease, em phasizing the challenges in Mild Cognitive Impairment (MCI) classification, and in troduces a CNN-based pipeline utilizing a plane-wise ensemble technique for 3D MRI image classification. To manage the complex nature of 3D MRI data, a CNN-based pipeline is proposed that makes use of a plane-wise ensemble technique. Decompos ing the 3D image into axial, coronal, and sagittal planes, and using an ensemble of 2D CNN models trained on the axial, coronal, and sagittal planes, the system attempts to include multi-view data and improve classification accuracy. This methodology also leverages projector functions to map the 3D volumes into a series of 2D images and tackles the computational challenges presented by 3D data, resulting in a more efficient and practical process even with constrained computation resources. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Computer Science and Engineering(CSE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.title | A CNN-based Pipeline using Plane-wise Ensemble Technique for Classifying Alzheimer’s Disease from 3D MRI Images | en_US |
dc.type | Thesis | en_US |