dc.identifier.citation |
[1] A. Abdullah, ABM Abdullah Long Cases in Clinical Medicine. [2] K. Albrink, C. Joos, D. Schröder, F. Müller, E. Hummers-Pradier, and E. Noack, “Obtaining patients’ medical history using a digital device prior to consultation in primary care: Study protocol for a usability and validity study,” BMC Medical Informatics and Decision Making, vol. 22, Jul. 2022. doi: 10 . 1186 / s12911 - 022-01928-0. [3] J. W. Bachman, “The patient-computer interview: A neglected tool that can aid the clinician,” Mayo Clinic Proceedings, vol. 78, no. 1, pp. 67–78, Jan. 2003. doi: 10.4065/78.1.67. [Online]. Available: https://pubmed.ncbi.nlm.nih. gov/12528879/. [4] bayazid, Bayazid Arts of History Taking and Symptoms Analysis. [5] H. Brandberg, T. Kahan, J. Spaak, et al., “A prospective cohort study of self reported computerised medical history taking for acute chest pain: Protocol of the cleos-chest pain danderyd study (cleos-cpds),” BMJ Open, vol. 10, no. 1, e031871, Jan. 2020. doi: 10.1136/bmjopen-2019-031871. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31969363/. [6] H. Brandberg, C. J. Sundberg, J. Spaak, S. Koch, D. Zakim, and T. Kahan, “Use of self-reported computerized medical history taking for acute chest pain in the emergency department – the clinical expert operating system chest pain dan deryd study (cleos-cpds): Prospective cohort study,” JMIR. Journal of Medical Internet Research/Journal of Medical Internet Research, vol. 23, no. 4, e25493, Apr. 2021. doi: 10.2196/25493. [Online]. Available: https://www.researchgate. net / publication / 351128602 _ Use _ of _ Self - Reported _ Computerized _ Medical_History_Taking_for_Acute_Chest_Pain_in_the_Emergency_ Department_- _the_Clinical_Expert_Operating_System_Chest_Pain_ Danderyd_Study_CLEOS-CPDS_Prospective_Cohort. [7] R. D. Collins, Algorithmic Diagnosis of Symptoms and Signs: A Cost-Effective Ap proach. 56 [8] F. Fareez, T. Parikh, C. Wavell, et al., “A dataset of simulated patient-physician medical interviews with a focus on respiratory cases,” Scientific Data, vol. 9, no. 1, Jun. 2022. doi: 10 . 1038 / s41597 - 022 - 01423 - 1. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/35710769/. [9] W. Fink, G. Kamenski, and M. Konitzer, “Diagnostic protocols—a consultation tool still to be discovered,” Journal of Evaluation in Clinical Practice, vol. 24, pp. 293–300, 2017. [Online]. Available: https://api.semanticscholar.org/ CorpusID:4389827. [10] C. Gakii, P. O. Mireji, and R. Rimiru, “Graph based feature selection for reduc tion of dimensionality in next-generation rna sequencing datasets,” Algorithms, vol. 15, no. 1, 2022, issn: 1999-4893. doi: 10.3390/a15010021. [Online]. Avail able: https://www.mdpi.com/1999-4893/15/1/21. [11] P. Hamsagayathri and S. Vigneshwaran, “Symptoms based disease prediction using machine learning techniques,” in 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), 2021, pp. 747–752. doi: 10.1109/ICICV50876.2021.9388603. [12] P. J. Haug, H. R. Warner, P. D. Clayton, et al., “A decision-driven system to collect the patient history,” Computers and Biomedical Research, vol. 20, no. 2, pp. 193–207, Apr. 1987. doi: 10 . 1016 / 0010 - 4809(87 ) 90045 - 0. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/3595100/. [13] V. Jackins, S. Vimal, M. Kaliappan, and M. Y. Lee, “Ai-based smart prediction of clinical disease using random forest classifier and naive bayes,” the Journal of Supercomputing/Journal of Supercomputing, vol. 77, no. 5, pp. 5198–5219, Nov. 2020. doi: 10.1007/s11227-020-03481-x. [Online]. Available: https: //doi.org/10.1007/s11227-020-03481-x. [14] Macleod, Macleod’s Clinical Examination. [15] H. Mazumder, “Web based disease detection system,” en-US, IJERT, Apr. 2013. doi: 10.17577/IJERTV2IS4870. [Online]. Available: https://doi.org/10. 17577/IJERTV2IS4870. [16] D. R. N. Mondal, A manual of history taking and clinical examination by Dr. Ratindra Nath Mondal. [17] F. Müller, S. Chandra, G. Furaijat, et al., “A digital communication assistance tool (dcat) to obtain medical history from foreign-language patients: Develop ment and pilot testing in a primary health care center for refugees,” Interna tional Journal of Environmental Research and Public Health, vol. 17, p. 1368, Feb. 2020. doi: 10.3390/ijerph17041368. 57 [18] R. Nierenberg, “The chief complaint driven medical history: Implications for medical education,” International Journal of Medical Education, vol. 8, pp. 205– 206, May 2017. doi: 10.5116/ijme.5907.74d8. [Online]. Available: https: //www.ncbi.nlm.nih.gov/pmc/articles/PMC5457789/. [19] R. J. Nierenberg, “Using the chief complaint driven medical history: Theoretical background and practical steps for student clinicians,” MedEdPublish, vol. 9, p. 17, Jan. 2020. doi: 10 . 15694 / mep . 2020 . 000017 . 1. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/38130354/. [20] B. Saha, D. Devi, and H. Banerjee, “Healthcare chatbot using decision tree al gorithm,” Social Science Research Network, Jan. 2022. doi: 10 . 2139 / ssrn . 4247821. [Online]. Available: https : / / papers . ssrn . com / sol3 / papers . cfm?abstract_id=4247821. [21] Talley and O’Connor, Talley and O’Connor Clinical Examination. [22] Wikipedia contributors, Graph neural network — Wikipedia, the free encyclope dia, [Online; accessed 3-June-2024], 2024. [Online]. Available: https://en. wikipedia . org / w / index . php ? title = Graph _ neural _ network & oldid = 1222140076. [23] D. Zakim, “Development and significance of automated history-taking software for clinical medicine, clinical research and basic medical science,” Journal of Internal Medicine, vol. 280, Apr. 2016. doi: 10.1111/joim.12509. [24] D. Zakim, H. Brandberg, S. E. Amrani, et al., “Computerized history-taking im proves data quality for clinical decision-making—comparison of ehr and computer acquired history data in patients with chest pain,” PloS One, vol. 16, no. 9, e0257677, Sep. 2021. doi: 10.1371/journal.pone.0257677. [Online]. Available: https: //www.ncbi.nlm.nih.gov/pmc/articles/PMC8476015/. [25] D. Zakim, N. Braun, P. Fritz, and M. D. Alscher, “Underutilization of informa tion and knowledge in everyday medical practice: Evaluation of a computer based solution,” BMC Medical Informatics and Decision Making, vol. 8, no. 1, Nov. 2008. doi: 10 . 1186 / 1472 - 6947 - 8 - 50. [Online]. Available: https : //doi.org/10.1186/1472-6947-8-50. [26] G. Zeng,W. Yang, Z. Ju, et al., “MedDialog: Large-scale medical dialogue datasets,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), B. Webber, T. Cohn, Y. He, and Y. Liu, Eds., Online: As sociation for Computational Linguistics, Nov. 2020, pp. 9241–9250. doi: 10 . 18653/v1/2020.emnlp-main.743. [Online]. Available: https://aclanthology. org/2020.emnlp-main.743. |
en_US |