| Login
dc.contributor.author | Khan, Yasin | |
dc.date.accessioned | 2025-03-13T05:00:52Z | |
dc.date.available | 2025-03-13T05:00:52Z | |
dc.date.issued | 2024-05-25 | |
dc.identifier.citation | [1] V. S. Chakravarthy, R. K. Shah, and G. Venkatarathnam, “A review of refrigeration methods in the temperature range 4-300 K,” J Therm Sci Eng Appl, vol. 3, no. 2, Jul. 2011, doi: 10.1115/1.4003701/469408. [2] “Industrial Application of Refrigeration | ARANER.” Accessed: May 25, 2024. [Online]. Available: https://www.araner.com/blog/industrial-refrigeration-applications-district cooling [3] “The Future of Cooling,” The Future of Cooling, May 2018, doi: 10.1787/9789264301993- EN. [4] U. Desideri, S. Proietti, and P. Sdringola, “Solar-powered cooling systems: Technical and economic analysis on industrial refrigeration and air-conditioning applications,” Appl Energy, vol. 86, no. 9, pp. 1376–1386, Sep. 2009, doi: 10.1016/J.APENERGY.2009.01.011. [5] S. B. Riffat and C. W. Wong, “Gas-driven absorption/recompression system,” Heat Recovery Systems and CHP, vol. 14, no. 2, pp. 165–171, Mar. 1994, doi: 10.1016/0890- 4332(94)90007-8. [6] H. Selvnes, Y. Allouche, R. I. Manescu, and A. Hafner, “Review on cold thermal energy storage applied to refrigeration systems using phase change materials,” Thermal Science and Engineering Progress, vol. 22, p. 100807, May 2021, doi: 10.1016/J.TSEP.2020.100807. [7] D. Enescu and E. O. Virjoghe, “A review on thermoelectric cooling parameters and performance,” Renewable and Sustainable Energy Reviews, vol. 38, pp. 903–916, Oct. 2014, doi: 10.1016/J.RSER.2014.07.045. [8] “Thermoelectric cooling - Wikipedia.” Accessed: Mar. 16, 2024. [Online]. Available: https://en.wikipedia.org/wiki/Thermoelectric_cooling [9] “Magnetic refrigeration - Wikipedia.” Accessed: Mar. 16, 2024. [Online]. Available: https://en.wikipedia.org/wiki/Magnetic_refrigeration [10] M. E. H. Tijani and Technische Universiteit Eindhoven., “Loudspeaker-driven thermo acoustic refrigeration,” 2001. 195 | P a g e Chapter 9: Bibliography [11] M. Walid Faruque, Y. Khan, M. Hafiz Nabil, M. Monjurul Ehsan, and A. Karim, “Thermal Performance Evaluation of a Novel Ejector-Injection Cascade Refrigeration System,” Thermal Science and Engineering Progress, p. 101745, Feb. 2023, doi: 10.1016/J.TSEP.2023.101745. [12] M. W. Faruque, Y. Khan, M. H. Nabil, and M. M. Ehsan, “Parametric analysis and optimization of a novel cascade compression-absorption refrigeration system integrated with a flash tank and a reheater,” Results in Engineering, vol. 17, p. 101008, Mar. 2023, doi: 10.1016/J.RINENG.2023.101008. [13] Z. Zhang, X. Feng, D. Tian, J. Yang, and L. Chang, “Progress in ejector-expansion vapor compression refrigeration and heat pump systems,” Energy Convers Manag, vol. 207, p. 112529, Mar. 2020, doi: 10.1016/j.enconman.2020.112529. [14] X. Wang, J. Yu, and M. Xing, “Performance analysis of a new ejector enhanced vapor injection heat pump cycle,” Energy Convers Manag, vol. 100, pp. 242–248, Aug. 2015, doi: 10.1016/J.ENCONMAN.2015.05.017. [15] “Refrigeration Cycle 101 - MEP Academy.” Accessed: May 25, 2024. [Online]. Available: https://mepacademy.com/refrigeration-cycle-101/ [16] C. Park, H. Lee, Y. Hwang, and R. Radermacher, “Recent advances in vapor compression cycle technologies,” International Journal of Refrigeration, vol. 60, pp. 118–134, Dec. 2015, doi: 10.1016/J.IJREFRIG.2015.08.005. [17] “Difference between Vapour Compression and Vapour Absorption | PDF.” Accessed: May 25, 2024. [Online]. Available: https://dizz.com/difference-between-vapour-compression and-vapour-absorption-refrigeration-system-pdf-2/ [18] C. Cimsit and I. T. Ozturk, “Analysis of compression–absorption cascade refrigeration cycles,” Appl Therm Eng, vol. 40, pp. 311–317, Jul. 2012, doi: 10.1016/J.APPLTHERMALENG.2012.02.035. [19] Y. Khan, M. W. Faruque, M. H. Nabil, and M. M. Ehsan, “Ejector and Vapor Injection Enhanced Novel Compression-Absorption Cascade Refrigeration Systems: A Thermodynamic Parametric and Refrigerant Analysis,” Energy Convers Manag, vol. 289, p. 117190, Aug. 2023, doi: 10.1016/J.ENCONMAN.2023.117190. 196 | P a g e Chapter 9: Bibliography [20] S. Salehi, M. Yari, S. M. S. Mahmoudi, and L. G. Farshi, “Investigation of crystallization risk in different types of absorption LiBr/H2O heat transformers,” Thermal Science and Engineering Progress, vol. 10, pp. 48–58, May 2019, doi: 10.1016/J.TSEP.2019.01.013. [21] S. T. Kadam et al., “Thermo-economic and environmental assessment of hybrid vapor compression-absorption refrigeration systems for district cooling,” Energy, vol. 243, 2022, doi: 10.1016/j.energy.2021.122991. [22] J. M. Asensio-Delgado, S. Asensio-Delgado, G. Zarca, and A. Urtiaga, “Analysis of hybrid compression absorption refrigeration using low-GWP HFC or HFO/ionic liquid working pairs,” International Journal of Refrigeration, vol. 134, pp. 232–241, 2022, doi: 10.1016/j.ijrefrig.2021.11.013. [23] L. Kairouani and E. Nehdi, “Cooling performance and energy saving of a compression absorption refrigeration system assisted by geothermal energy,” Appl Therm Eng, vol. 26, no. 2–3, pp. 288–294, 2006, doi: 10.1016/j.applthermaleng.2005.05.001. [24] A. Razmi, M. Soltani, F. M. Kashkooli, and L. Garousi Farshi, “Energy and exergy analysis of an environmentally-friendly hybrid absorption/recompression refrigeration system,” Energy Convers Manag, vol. 164, pp. 59–69, May 2018, doi: 10.1016/J.ENCONMAN.2018.02.084. [25] A. Zarei, J. Zamani, L. Hooshyari, and S. Zaboli, “Energy and exergy analysis of a novel multi-pressure levels ejector absorption-recompression refrigeration system: Parametric study and optimization,” Thermal Science and Engineering Progress, vol. 42, p. 101904, Jul. 2023, doi: 10.1016/J.TSEP.2023.101904. [26] C. Park, H. Lee, Y. Hwang, and R. Radermacher, “Recent advances in vapor compression cycle technologies,” International Journal of Refrigeration, vol. 60, pp. 118–134, Dec. 2015, doi: 10.1016/J.IJREFRIG.2015.08.005. [27] B. O. Bolaji and Z. Huan, “Ozone depletion and global warming: Case for the use of natural refrigerant - A review,” Renewable and Sustainable Energy Reviews, vol. 18, pp. 49–54, 2013, doi: 10.1016/j.rser.2012.10.008. [28] R. A. Kerr, “Global warming is changing the world,” Science (1979), vol. 316, no. 5822, pp. 188–190, Apr. 2007, doi: 10.1126/science.316.5822.188. [29] A. Mota-Babiloni, J. R. Barbosa, P. Makhnatch, and J. A. Lozano, “Assessment of the utilization of equivalent warming impact metrics in refrigeration, air conditioning and heat 197 | P a g e Chapter 9: Bibliography pump systems,” Renewable and Sustainable Energy Reviews, vol. 129, 2020, doi: 10.1016/j.rser.2020.109929. [30] S. E. Hosseini and M. A. Wahid, “Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 850–866, 2016, doi: 10.1016/j.rser.2015.12.112. [31] S. Bista, S. E. Hosseini, E. Owens, and G. Phillips, “Performance improvement and energy consumption reduction in refrigeration systems using phase change material (PCM),” Appl Therm Eng, vol. 142, pp. 723–735, 2018, doi: 10.1016/j.applthermaleng.2018.07.068. [32] N. Johnson, J. Baltrusaitis, and W. L. Luyben, “Design and control of a cryogenic multi stage compression refrigeration process,” Chemical Engineering Research and Design, vol. 121, pp. 360–367, 2017, doi: 10.1016/j.cherd.2017.03.018. [33] A. Rai and S. A. Tassou, “Environmental impacts of vapour compression and cryogenic transport refrigeration technologies for temperature controlled food distribution,” Energy Convers Manag, vol. 150, pp. 914–923, Oct. 2017, doi: 10.1016/J.ENCONMAN.2017.05.024. [34] J. A. Dopazo and J. Fernández-Seara, “Experimental evaluation of a cascade refrigeration system prototype with CO2 and NH3 for freezing process applications,” International Journal of Refrigeration, vol. 34, no. 1, pp. 257–267, Jan. 2011, doi: 10.1016/J.IJREFRIG.2010.07.010. [35] M. Walid Faruque, M. Hafiz Nabil, M. Raihan Uddin, M. Monjurul Ehsan, and S. Salehin, “Thermodynamic assessment of a triple cascade refrigeration system utilizing hydrocarbon refrigerants for ultra-low temperature applications,” Energy Conversion and Management: X, vol. 14, p. 100207, May 2022, doi: 10.1016/J.ECMX.2022.100207. [36] A. A. Kornhauser, “Purdue e-Pubs The Use of an Ejector as a Refrigerant Expander”, Accessed: Aug. 18, 2022. [Online]. Available: http://docs.lib.purdue.edu/iracc/82 [37] D. M. Nasution, M. Idris, N. A. Pambudi, and Weriono, “Room air conditioning performance using liquid-suction heat exchanger retrofitted with R290,” Case Studies in Thermal Engineering, vol. 13, Mar. 2019, doi: 10.1016/J.CSITE.2018.11.001. [38] A. Mota-Babiloni, J. Navarro-Esbrí, V. Pascual-Miralles, Á. Barragán-Cervera, and A. Maiorino, “Experimental influence of an internal heat exchanger (IHX) using R513A and 198 | P a g e Chapter 9: Bibliography R134a in a vapor compression system,” Appl Therm Eng, vol. 147, pp. 482–491, Jan. 2019, doi: 10.1016/J.APPLTHERMALENG.2018.10.092. [39] M. Elakhdar, B. M. Tashtoush, E. Nehdi, and L. Kairouani, “Thermodynamic analysis of a novel Ejector Enhanced Vapor Compression Refrigeration (EEVCR) cycle,” Energy, vol. 163, pp. 1217–1230, Nov. 2018, doi: 10.1016/J.ENERGY.2018.09.050. [40] J. Heo, M. W. Jeong, C. Baek, and Y. Kim, “Comparison of the heating performance of air source heat pumps using various types of refrigerant injection,” International Journal of Refrigeration, vol. 34, no. 2, pp. 444–453, Mar. 2011, doi: 10.1016/J.IJREFRIG.2010.10.003. [41] X. Shuxue, M. Guoyuan, L. Qi, and L. Zhongliang, “Experiment study of an enhanced vapor injection refrigeration/heat pump system using R32,” International Journal of Thermal Sciences, vol. 68, pp. 103–109, Jun. 2013, doi: 10.1016/J.IJTHERMALSCI.2012.12.014. [42] D. Yang, Y. Li, J. Xie, and J. Wang, “Exergy destruction characteristics of a transcritical carbon dioxide two-stage compression/ejector refrigeration system for low-temperature cold storage,” Energy Reports, vol. 8, pp. 8546–8562, Nov. 2022, doi: 10.1016/J.EGYR.2022.06.066. [43] X. Cao, X. Liang, L. Shao, and C. Zhang, “Performance analysis of an ejector-assisted two stage evaporation single-stage vapor-compression cycle,” Appl Therm Eng, vol. 205, p. 118005, Mar. 2022, doi: 10.1016/J.APPLTHERMALENG.2021.118005. [44] M. Q. Zeng, Q. Y. Zheng, X. L. Zhang, F. Y. Mo, and X. R. Zhang, “Thermodynamic analysis of a novel multi-target temperature transcritical CO2 ejector-expansion refrigeration cycle with vapor-injection,” Energy, vol. 259, p. 125016, Nov. 2022, doi: 10.1016/J.ENERGY.2022.125016. [45] R. Nikbakhti, X. Wang, A. K. Hussein, and A. Iranmanesh, “Absorption cooling systems – Review of various techniques for energy performance enhancement,” Alexandria Engineering Journal, vol. 59, no. 2, pp. 707–738, Apr. 2020, doi: 10.1016/J.AEJ.2020.01.036. [46] M. R. Islam, “Field guidelines,” Reservoir Development, pp. 737–843, Jan. 2022, doi: 10.1016/B978-0-12-820053-7.00004-4. 199 | P a g e Chapter 9: Bibliography [47] X. Liao and R. Radermacher, “Absorption chiller crystallization control strategies for integrated cooling heating and power systems,” International Journal of Refrigeration, vol. 30, no. 5, pp. 904–911, Aug. 2007, doi: 10.1016/J.IJREFRIG.2006.10.009. [48] W. Wu, B. Wang, W. Shi, and X. Li, “Crystallization Analysis and Control of Ammonia Based Air Source Absorption Heat Pump in Cold Regions,” Advances in Mechanical Engineering, vol. 2013, 2013, doi: 10.1155/2013/140341. [49] J. S. Talpada and P. V. Ramana, “A review on performance improvement of an absorption refrigeration system by modification of basic cycle,” International Journal of Ambient Energy, vol. 40, no. 6, pp. 661–673, Aug. 2019, doi: 10.1080/01430750.2017.1423379. [50] A. Shirazi, R. A. Taylor, S. D. White, and G. L. Morrison, “A systematic parametric study and feasibility assessment of solar-assisted single-effect, double-effect, and triple-effect absorption chillers for heating and cooling applications,” Energy Convers Manag, vol. 114, pp. 258–277, Apr. 2016, doi: 10.1016/J.ENCONMAN.2016.01.070. [51] A. M. Abed, M. A. Alghoul, R. Sirawn, A. N. Al-Shamani, and K. Sopian, “Performance enhancement of ejector–absorption cooling cycle by re-arrangement of solution streamlines and adding RHE,” Appl Therm Eng, vol. 77, pp. 65–75, Feb. 2015, doi: 10.1016/J.APPLTHERMALENG.2014.12.003. [52] S. Raghuvanshi and G. Maheshwari, “Analysis of Ammonia-Water (NH3-H2O) Vapor Absorption Refrigeration System based on First Law of Thermodynamics,” Int J Sci Eng Res, vol. 2, no. 8, 2011, Accessed: Oct. 13, 2023. [Online]. Available: http://www.ijser.org [53] R. Gomri, “Second law comparison of single effect and double effect vapour absorption refrigeration systems,” Energy Convers Manag, vol. 50, no. 5, pp. 1279–1287, May 2009, doi: 10.1016/J.ENCONMAN.2009.01.019. [54] D. Colorado and W. Rivera, “Performance comparison between a conventional vapor compression and compression-absorption single-stage and double-stage systems used for refrigeration,” Appl Therm Eng, vol. 87, pp. 273–285, Aug. 2015, doi: 10.1016/J.APPLTHERMALENG.2015.05.029. [55] M. U. Arshad, M. Zaman, M. Rizwan, and A. Elkamel, “Economic optimization of parallel and series configurations of the double effect absorption refrigeration system,” Energy Convers Manag, vol. 210, p. 112661, Apr. 2020, doi: 10.1016/J.ENCONMAN.2020.112661. 200 | P a g e Chapter 9: Bibliography [56] R. Maryami and A. A. Dehghan, “An exergy based comparative study between LiBr/water absorption refrigeration systems from half effect to triple effect,” Appl Therm Eng, vol. 124, pp. 103–123, Sep. 2017, doi: 10.1016/J.APPLTHERMALENG.2017.05.174. [57] M. Azhar and M. A. Siddiqui, “Optimization of operating temperatures in the gas operated single to triple effect vapour absorption refrigeration cycles,” International Journal of Refrigeration, vol. 82, pp. 401–425, Oct. 2017, doi: 10.1016/J.IJREFRIG.2017.06.033. [58] A. Solanki and Y. Pal, “Energy and exergy evaluation of triple-effect H2O/LiBr absorption cooling system,” International Journal of Ambient Energy, Dec. 2022, doi: 10.1080/01430750.2020.1831598. [59] A. Dousti, L. G. Farshi, and N. Asadi, “Thermodynamic and crystallization analysis of absorption-recompression system and comparison with conventional absorption cycle,” Mech. Eng. Dept, 2015, Accessed: Oct. 13, 2023. [Online]. Available: https://www.researchgate.net/publication/320182667 [60] A. R. Razmi, A. Arabkoohsar, and H. Nami, “Thermoeconomic analysis and multi objective optimization of a novel hybrid absorption/recompression refrigeration system,” Energy, vol. 210, p. 118559, Nov. 2020, doi: 10.1016/J.ENERGY.2020.118559. [61] C. Vereda, R. Ventas, A. Lecuona, and R. López, “Single-effect absorption refrigeration cycle boosted with an ejector-adiabatic absorber using a single solution pump,” International Journal of Refrigeration, vol. 38, no. 1, pp. 22–29, Feb. 2014, doi: 10.1016/J.IJREFRIG.2013.10.010. [62] X. Liang, S. Zhou, J. Deng, G. He, and D. Cai, “Thermodynamic analysis of a novel combined double ejector-absorption refrigeration system using ammonia/salt working pairs without mechanical pumps,” Energy, vol. 185, pp. 895–909, Oct. 2019, doi: 10.1016/J.ENERGY.2019.07.104. [63] A. Dhahi Gharir, L. Garousi Farshi, and S. M. S. Mahmoudi, “Performance evaluation of a novel ejector absorption refrigeration cycle combined with two flash tanks,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 45, no. 3, pp. 1–22, Mar. 2023, doi: 10.1007/S40430-023-04093-1/METRICS. [64] J. M. Asensio-Delgado, S. Asensio-Delgado, G. Zarca, and A. Urtiaga, “Analysis of hybrid compression absorption refrigeration using low-GWP HFC or HFO/ionic liquid working 201 | P a g e Chapter 9: Bibliography pairs,” International Journal of Refrigeration, vol. 134, pp. 232–241, Feb. 2022, doi: 10.1016/J.IJREFRIG.2021.11.013. [65] S. T. Kadam et al., “Thermo-economic and environmental assessment of hybrid vapor compression-absorption refrigeration systems for district cooling,” Energy, vol. 243, p. 122991, Mar. 2022, doi: 10.1016/J.ENERGY.2021.122991. [66] W. Han, L. Sun, D. Zheng, H. Jin, S. Ma, and X. Jing, “New hybrid absorption-compression refrigeration system based on cascade use of mid-temperature waste heat,” Appl Energy, vol. 106, pp. 383–390, 2013, doi: 10.1016/J.APENERGY.2013.01.067. [67] M. Yu, P. Cui, Y. Wang, Z. Liu, Z. Zhu, and S. Yang, “Advanced Exergy and Exergoeconomic Analysis of Cascade Absorption Refrigeration System Driven by Low Grade Waste Heat,” ACS Sustain Chem Eng, vol. 7, no. 19, pp. 16843–16857, Oct. 2019, doi: 10.1021/ACSSUSCHEMENG.9B04396/ASSET/IMAGES/MEDIUM/SC9B04396_0011. GIF. [68] C. Cimsit and I. T. Ozturk, “Analysis of compression–absorption cascade refrigeration cycles,” Appl Therm Eng, vol. 40, pp. 311–317, Jul. 2012, doi: 10.1016/J.APPLTHERMALENG.2012.02.035. [69] C. Cimsit, I. T. Ozturk, and O. Kincay, “Thermoeconomic optimization of LiBr/H2O R134a compression-absorption cascade refrigeration cycle,” Appl Therm Eng, vol. 76, pp. 105–115, Feb. 2015, doi: 10.1016/J.APPLTHERMALENG.2014.10.094. [70] Y. Xu, F. S. Chen, Q. Wang, X. Han, D. Li, and G. Chen, “A novel low-temperature absorption–compression cascade refrigeration system,” Appl Therm Eng, vol. 75, pp. 504– 512, Jan. 2015, doi: 10.1016/J.APPLTHERMALENG.2014.10.043. [71] Y. Chen, W. Han, and H. Jin, “Proposal and analysis of a novel heat-driven absorption– compression refrigeration system at low temperatures,” Appl Energy, vol. 185, pp. 2106– 2116, Jan. 2017, doi: 10.1016/J.APENERGY.2015.12.009. [72] A. Razmi, M. Soltani, and M. Torabi, “Investigation of an efficient and environmentally friendly CCHP system based on CAES, ORC and compression-absorption refrigeration cycle: Energy and exergy analysis,” Energy Convers Manag, vol. 195, pp. 1199–1211, Sep. 2019, doi: 10.1016/J.ENCONMAN.2019.05.065. 202 | P a g e Chapter 9: Bibliography [73] A. Razmi, M. Soltani, F. M. Kashkooli, and L. Garousi Farshi, “Energy and exergy analysis of an environmentally-friendly hybrid absorption/recompression refrigeration system,” Energy Convers Manag, vol. 164, pp. 59–69, May 2018, doi: 10.1016/J.ENCONMAN.2018.02.084. [74] C. Cimsit and I. T. Ozturk, “Analysis of compression–absorption cascade refrigeration cycles,” Appl Therm Eng, vol. 40, pp. 311–317, Jul. 2012, doi: 10.1016/J.APPLTHERMALENG.2012.02.035. [75] O. Kaynakli and M. Kilic, “Theoretical study on the effect of operating conditions on performance of absorption refrigeration system,” Energy Convers Manag, vol. 48, no. 2, pp. 599–607, Feb. 2007, doi: 10.1016/J.ENCONMAN.2006.06.005. [76] Y. Cengel, M. Boles, and M. Kanoğlu, Thermodynamics: an engineering approach. 2011. Accessed: Dec. 01, 2022. [Online]. Available: https://www.academia.edu/download/55284132/Solution_Manual_8th_Ed.pdf [77] H. Ghaebi, T. Parikhani, H. Rostamzadeh, and B. Farhang, “Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles,” Energy, vol. 139, pp. 262– 276, Nov. 2017, doi: 10.1016/J.ENERGY.2017.07.154. [78] C. Aktemur, I. T. Ozturk, and C. Cimsit, “Comparative energy and exergy analysis of a subcritical cascade refrigeration system using low global warming potential refrigerants,” Appl Therm Eng, vol. 184, p. 116254, Feb. 2021, doi: 10.1016/J.APPLTHERMALENG.2020.116254. [79] Z. Sun, Q. Wang, Z. Xie, S. Liu, D. Su, and Q. Cui, “Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system,” Energy, vol. 170, pp. 1170–1180, Mar. 2019, doi: 10.1016/J.ENERGY.2018.12.055. [80] A. Bejan, G. Tsatsaronis, and M. Moran, Thermal design and optimization. 1995. Accessed: Dec. 01, 2022. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=sTi2crXeZYgC&oi=fnd&pg=PA1&dq= Thermal+design+and+optimization&ots=IdahfnBtRd&sig=TfcMiHdnc2J2VfuMYwr2YH 3qv8A 203 | P a g e Chapter 9: Bibliography [81] T. Avanessian and M. Ameri, “Energy, exergy, and economic analysis of single and double effect LiBr–H2O absorption chillers,” Energy Build, vol. 73, pp. 26–36, Apr. 2014, doi: 10.1016/J.ENBUILD.2014.01.013. [82] S. M. Alirahmi, S. Rahmani Dabbagh, P. Ahmadi, and S. Wongwises, “Multi-objective design optimization of a multi-generation energy system based on geothermal and solar energy,” Energy Convers Manag, vol. 205, p. 112426, Feb. 2020, doi: 10.1016/J.ENCONMAN.2019.112426. [83] H. Nami and A. Arabkoohsar, “Improving the power share of waste-driven CHP plants via parallelization with a small-scale Rankine cycle, a thermodynamic analysis,” Energy, vol. 171, pp. 27–36, Mar. 2019, doi: 10.1016/J.ENERGY.2018.12.168. [84] D. Colorado-Garrido, “Advanced Exergy Analysis of a Compression-Absorption Cascade Refrigeration System,” Journal of Energy Resources Technology, Transactions of the ASME, vol. 141, no. 4, Apr. 2019, doi: 10.1115/1.4042003/368161. [85] A. Razmi, M. Soltani, F. M. Kashkooli, and L. Garousi Farshi, “Energy and exergy analysis of an environmentally-friendly hybrid absorption/recompression refrigeration system,” Energy Convers Manag, vol. 164, pp. 59–69, May 2018, doi: 10.1016/J.ENCONMAN.2018.02.084. [86] S. Somesh, S. K. Shaw, and P. Mahendru, “A comprehensive review on LiBr–H2O based solar-powered vapour absorption refrigeration system,” Lecture Notes in Mechanical Engineering, pp. 343–352, 2019, doi: 10.1007/978-981-13-6577-5_32/COVER. [87] M. A. I. El-Shaarawi and A. A. Al-Ugla, “Unsteady analysis for solar-powered hybrid storage LiBr-water absorption air-conditioning,” Solar Energy, vol. 144, pp. 556–568, Mar. 2017, doi: 10.1016/J.SOLENER.2016.12.054. [88] A. A. S. Lima et al., “Absorption refrigeration systems based on ammonia as refrigerant using different absorbents: Review and applications,” Energies (Basel), vol. 14, no. 1, Jan. 2021, doi: 10.3390/EN14010048. [89] L. T. Chen, “A new ejector-absorber cycle to improve the COP of an absorption refrigeration system,” Appl Energy, vol. 30, no. 1, pp. 37–51, Jan. 1988, doi: 10.1016/0306- 2619(88)90053-0. 204 | P a g e Chapter 9: Bibliography [90] F. Táboas, M. Bourouis, and M. Vallès, “Analysis of ammonia/water and ammonia/salt mixture absorption cycles for refrigeration purposes in fishing ships,” Appl Therm Eng, vol. 66, no. 1–2, pp. 603–611, May 2014, doi: 10.1016/J.APPLTHERMALENG.2014.02.065. [91] H. Li, F. Cao, X. Bu, L. Wang, and X. Wang, “Performance characteristics of R1234yf ejector-expansion refrigeration cycle,” Appl Energy, vol. 121, pp. 96–103, May 2014, doi: 10.1016/J.APENERGY.2014.01.079. [92] K. Sumeru, H. Nasution, and F. N. Ani, “A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle,” Renewable and Sustainable Energy Reviews, vol. 16, no. 7, pp. 4927–4937, Sep. 2012, doi: 10.1016/J.RSER.2012.04.058. [93] J. Sarkar, “Ejector enhanced vapor compression refrigeration and heat pump systems—A review,” Renewable and Sustainable Energy Reviews, vol. 16, no. 9, pp. 6647–6659, Dec. 2012, doi: 10.1016/J.RSER.2012.08.007. [94] Y. Liu, M. Yu, and J. Yu, “An improved 1-D thermodynamic modeling of small two-phase ejector for performance prediction and design,” Appl Therm Eng, vol. 204, p. 118006, Mar. 2022, doi: 10.1016/J.APPLTHERMALENG.2021.118006. [95] A. Sözen and M. Özalp, “Performance improvement of absorption refrigeration system using triple-pressure-level,” Appl Therm Eng, vol. 23, no. 13, pp. 1577–1593, Sep. 2003, doi: 10.1016/S1359-4311(03)00106-6. [96] A. Sohani, H. Sayyaadi, and S. Hoseinpoori, “Modeling and multi-objective optimization of an M-cycle cross-flow indirect evaporative cooler using the GMDH type neural network,” International Journal of Refrigeration, vol. 69, pp. 186–204, Sep. 2016, doi: 10.1016/J.IJREFRIG.2016.05.011. [97] A. K. Jain, Jianchang Mao, and K. M. Mohiuddin, “Artificial neural networks: a tutorial,” Computer (Long Beach Calif), vol. 29, no. 3, pp. 31–44, Mar. 1996, doi: 10.1109/2.485891. [98] A. Krogh, “What are artificial neural networks?,” Nat Biotechnol, vol. 26, no. 2, pp. 195– 197, Feb. 2008, doi: 10.1038/nbt1386. [99] A. Karthikeyan, M. E. Cimen, A. Akgul, A. F. Boz, and K. Rajagopal, “Persistence and coexistence of infinite attractors in a fractal Josephson junction resonator with unharmonic current phase relation considering feedback flux effect,” Nonlinear Dyn, vol. 103, no. 2, pp. 1979–1998, Jan. 2021, doi: 10.1007/s11071-020-06159-4. 205 | P a g e Chapter 9: Bibliography [100] B. Işcan, “ANN modeling for justification of thermodynamic analysis of experimental applications on combustion parameters of a diesel engine using diesel and safflower biodiesel fuels,” Fuel, vol. 279, p. 118391, Nov. 2020, doi: 10.1016/j.fuel.2020.118391. [101] A. Farsi, I. Dincer, and G. F. Naterer, “Multi-objective optimization of an experimental integrated thermochemical cycle of hydrogen production with an artificial neural network,” Int J Hydrogen Energy, vol. 45, no. 46, pp. 24355–24369, Sep. 2020, doi: 10.1016/j.ijhydene.2020.06.262. [102] F. Yang, H. Cho, H. Zhang, J. Zhang, and Y. Wu, “Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery,” Energy Convers Manag, vol. 164, pp. 15–26, May 2018, doi: 10.1016/j.enconman.2018.02.062. [103] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization using genetic algorithms: A tutorial,” Reliab Eng Syst Saf, vol. 91, no. 9, pp. 992–1007, Sep. 2006, doi: 10.1016/j.ress.2005.11.018. [104] A. Sohail, “Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences,” Annals of Data Science, vol. 10, no. 4, pp. 1007–1018, Aug. 2023, doi: 10.1007/s40745- 021-00354-9. [105] W. Zhang, A. Maleki, M. A. Rosen, and J. Liu, “Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm,” Energy Convers Manag, vol. 180, pp. 609–621, Jan. 2019, doi: 10.1016/j.enconman.2018.08.102. [106] A. I. Turja, M. M. Hasan, M. M. Ehsan, and Y. Khan, “Multi-objective performance optimization & thermodynamic analysis of solar powered supercritical CO2 power cycles using machine learning methods & genetic algorithm,” Energy and AI, vol. 15, p. 100327, Jan. 2024, doi: 10.1016/J.EGYAI.2023.100327. [107] C. Maschio, A. C. Vidal, and D. J. Schiozer, “A framework to integrate history matching and geostatistical modeling using genetic algorithm and direct search methods,” J Pet Sci Eng, vol. 63, no. 1–4, pp. 34–42, Dec. 2008, doi: 10.1016/J.PETROL.2008.08.001. [108] S. Diyaley, P. Shilal, I. Shivakoti, R. K. Ghadai, and K. Kalita, “PSI and TOPSIS Based Selection of Process Parameters in WEDM,” Periodica Polytechnica Mechanical Engineering, vol. 61, no. 4, p. 255, Sep. 2017, doi: 10.3311/PPme.10431. 206 | P a g e Chapter 9: Bibliography [109] F. Musharavati, S. Khanmohammadi, A. Pakseresht, and S. Khanmohammadi, “Waste heat recovery in an intercooled gas turbine system: Exergo-economic analysis, triple objective optimization, and optimum state selection,” J Clean Prod, vol. 279, p. 123428, Jan. 2021, doi: 10.1016/j.jclepro.2020.123428. [110] H. R. Shahhosseini, M. Farsi, and S. Eini, “Multi-objective optimization of industrial membrane SMR to produce syngas for Fischer-Tropsch production using NSGA-II and decision makings,” J Nat Gas Sci Eng, vol. 32, pp. 222–238, 2016, doi: 10.1016/j.jngse.2016.04.005. [111] B. Modi, A. Mudgal, and B. Patel, “Energy and Exergy Investigation of Small Capacity Single Effect Lithium Bromide Absorption Refrigeration System,” Energy Procedia, vol. 109, pp. 203–210, Mar. 2017, doi: 10.1016/J.EGYPRO.2017.03.040. [112] M. M. Talbi and B. Agnew, “Exergy analysis: an absorption refrigerator using lithium bromide and water as the working fluids,” Appl Therm Eng, vol. 20, no. 7, pp. 619–630, May 2000, doi: 10.1016/S1359-4311(99)00052-6. [113] G.-Y. Ma and H.-X. Zhao, “Experimental study of a heat pump system with flash-tank coupled with scroll compressor,” Energy Build, vol. 40, no. 5, pp. 697–701, Jan. 2008, doi: 10.1016/j.enbuild.2007.05.003. [114] J. Aman, D. S. K. Ting, and P. Henshaw, “Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system,” Appl Therm Eng, vol. 62, no. 2, pp. 424–432, Jan. 2014, doi: 10.1016/J.APPLTHERMALENG.2013.10.006. [115] A. R. Razmi, A. Arabkoohsar, and H. Nami, “Thermoeconomic analysis and multi objective optimization of a novel hybrid absorption/recompression refrigeration system,” Energy, vol. 210, p. 118559, Nov. 2020, doi: 10.1016/J.ENERGY.2020.118559. [116] A. Mota-Babiloni, J. Navarro-Esbrí, V. Pascual-Miralles, Á. Barragán-Cervera, and A. Maiorino, “Experimental influence of an internal heat exchanger (IHX) using R513A and R134a in a vapor compression system,” Appl Therm Eng, vol. 147, pp. 482–491, Jan. 2019, doi: 10.1016/j.applthermaleng.2018.10.092. [117] S. Elbel and P. Hrnjak, “Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation,” International Journal of Refrigeration, vol. 31, no. 3, pp. 411–422, May 2008, doi: 10.1016/J.IJREFRIG.2007.07.013. 207 | P a g e Chapter 9: Bibliography [118] S. M. Alirahmi, M. Rostami, and A. H. Farajollahi, “Multi-criteria design optimization and thermodynamic analysis of a novel multi-generation energy system for hydrogen, cooling, heating, power, and freshwater,” Int J Hydrogen Energy, vol. 45, no. 30, pp. 15047–15062, May 2020, doi: 10.1016/j.ijhydene.2020.03.235 | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/2391 | |
dc.description | Supervised by Prof. Dr. Mohammad Monjurul Ehsan, Department of Production and Mechanical Engineering(MPE), Islamic University of Technology (IUT) Board Bazar, Gazipur-1704, Bangladesh. This thesis is submitted in partial fulfillment of the requirement for the degree of Master of Science (M. Sc.) in Mechanical Engineering | en_US |
dc.description.abstract | This thesis presents an in-depth analysis of advanced modifications of absorption refrigeration systems, with the primary aim of enabling these systems to operate at reduced evaporator temperatures while achieving higher performance. This detailed study marks a significant advancement in refrigeration technology, specifically in the realm of cascade compression absorption refrigeration systems and the advancement of standalone ARC. The goals of this research are to collectively address critical challenges faced by traditional refrigeration cycles, such as energy inefficiency, high compressor power requirements, and environmental concerns, through a comprehensive approach. The research encompasses the development and simulation of sophisticated cascade compression-absorption refrigeration setups and novel stand-alone absorption system frameworks. Initially, the study focuses on the integration of modified ARC (Absorption Refrigeration Cycle) and advanced RAC (Recompression Absorption Cycle) with enhanced VCRs, incorporated with an ejector to develop advanced proposed novel cascaded configurations: Ejector Compression Absorption Cycle (ECAC), Ejector Injection Compression Absorption Cycle (EICAC), Ejector-Compression Recompression Absorption Cycle (E-CRAC) And Ejector enhanced vapor-Injection Compression Recompression Absorption Cycle (EI-CRAC). Furthermore, the study pioneers the adaptation of novel stand-alone absorption system frameworks, incorporating ejector-injection and recompression technologies to develop Refrigerant Ejector enhanced Recompression Absorption Cycle (RE-RAC) and Vapor Injection enhanced Recompression Absorption Cycle (VI-RAC). Both the advanced cascaded and stand-alone configurations undergo extensive analysis from energy and exergy perspectives, coupled with multi-objective optimization. Utilizing Artificial Neural Network (ANN)-based predictive models, the research meticulously assesses thermal performance, establishing optimal operating conditions and identifying operational limits. This comprehensive evaluation offers profound insights into the systems' behaviors across a spectrum of conditions, enriching our understanding of their potential and constraints in various application scenarios. The findings reveal that the proposed systems significantly outperform traditional systems in terms of Coefficient of Performance (COP) and exergy efficiency. Specifically, ECAC and EICAC systems achieve approximately 15% and 6% higher COP, respectively, compared to conventional cascade systems when using the R41-LiBr/H2O refrigerant. Additionally, EICAC and ECAC show significant improvements in exergy efficiency, up to 20% and 10%, respectively, with optimal performance around 77℃ generator temperature. Furthermore, the research explores RAC based proposed cascaded systems: one basic CRAC and two advanced configurations: E-CRAC and EI-CRAC. They significantly outperform the traditional CARC system, with the COP being nearly three times higher. EI-CRAC and E-CRAC show a COP enhancement of about 10% and 20%, respectively, along with an increase in exergy efficiency of 15% and 25% over CRAC, indicating superior efficiency in cooling operations. Finally, this research introduces novel stand-alone recompression absorption refrigeration systems integrating ejector-injection setup to replace expansion valves (RE-RAC and VI-RAC). RE-RAC and VI-RAC significantly outperform conventional ARC and RAC systems. The COP of RE-RAC and VI-RAC is 76% and 63% higher than the conventional RAC system, respectively, despite RE-RAC requiring more external heat generation due to VI-RAC’s additional compressor demands. This research contributes novel insights into the field of refrigeration by analyzing the integration of advanced absorption and compression technologies, providing a pathway for the development of more efficient and environmentally friendly refrigeration systems. The comprehensive analysis from both energetic and exergetic perspectives offers valuable guidance for future improvement and optimization, potentially revolutionizing cooling applications with lower environmental impact. Implementing these systems in real-life scenarios, such as power plants and various industries (e.g., textile, manufacturing, steel), can enhance waste heat utilization by achieving lower evaporator and generator temperatures with higher performance, making them suitable for efficiently using low-grade energy. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Mechanical and Production Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.subject | Refrigeration System Absorption Refrigeration Cycle Cascaded Systems Parametric Analysis Multi-objective optimization | en_US |
dc.title | Thermal Analysis and Multi-Objective Optimization of Cascaded and Advanced Absorption Refrigeration Technologies | en_US |
dc.type | Thesis | en_US |