Detection of Cancer Cell using SPR-PCF Biosensor

Show simple item record

dc.contributor.author Chowdhury, Atiqul Alam
dc.date.accessioned 2025-03-13T05:25:25Z
dc.date.available 2025-03-13T05:25:25Z
dc.date.issued 2024-05-12
dc.identifier.citation [1] N. Bhalla, P. Jolly, N. Formisano, and P. Estrela, “Introduction to biosensors.” vol. 60, pp. 1–8. [2] P. Skládal, “Piezoelectric biosensors,” TrAC Trends in Analytical Chemistry, vol. 79, pp. 127–133, 2016. [3] A. Koyun, E. Ahlatcolu, Y. Koca, and S. Kara, “Biosensors and their principles,” A Roadmap of Biomedical Engineers and Milestones, pp. 117–142, 2012. [4] H. Y. Neujahr, “Biosensors for environmental control,” Biotechnology and Ge netic Engineering Reviews, vol. 1, no. 1, pp. 167–186, 1984. [5] M. R. H. Khan, F. A. M. Ali, and M. R. Islam, “Thz sensing of covid-19 dis infecting products using photonic crystal fiber,” Sensing and Bio-Sensing Re search, vol. 33, p. 100447, 2021. [6] A. A. Chowdhury, M. R. H. Khan, M. I. H. Bhuiyan, M. R. Islam, M. M. Nishat et al., “Highly sensitive pcf-spr biosensor for glioblastoma brain cancer detec tion,” in 2023 IEEE Photonics Conference (IPC). IEEE, 2023, pp. 1–2. [7] M. R. H. Khan, M. S. Hosen, A. A. Chowdhury, M. R. Islam, F. Faisal, M. M. Nishat, and N. I. B. Hamid, “Silicate-glass based photonic crystal fiber for rapid petro-chemical sensing: Design and analysis,” Sensing and Bio-Sensing Re search, p. 100579, 2023. [8] M. R. H. Khan, A. A. Chowdhury, M. R. Islam, M. S. Hosen, M. H. Mim, and M. M. Nishat, “Wave-shaped microstructure cancer detection sensor in terahertz band: Design and analysis,” Applied Sciences, vol. 13, no. 9, p. 5784, 2023. [9] M. R. Islam, A. Iftekher, M. H. I. Meraz, M. J. Nayen, and M. R. H. Khan, “Design of a dual arrow shaped and dual plasmonic material compatible spr pcf sensor,” Optical and Quantum Electronics, vol. 55, no. 13, p. 1125, 2023. [10] M. R. Islam, A. M. A. Naser, F. Z. Jaba, F. Anzum, A. N. M. Iftekher, M. R. H. Khan, and M. M. Nishat, “Design of a hexagonal outlined porous cladding with 88 vacant core photonic crystal fibre biosensor for cyanide detection at thz regime,” IET Optoelectronics, vol. 16, no. 4, pp. 160–173, 2022. [11] M. R. Islam, F. Yasir, M. R. H. Antor, M. H. Turja, A. Rahman, M. R. H. Khan, and M. T. Reza, “An eye-shaped ultra-sensitive localized surface plasmon resonance–based biochemical sensor,” Plasmonics, pp. 1–11, 2021. [12] M. R. Islam, A. Iftekher, F. Noor, M. R. H. Khan, M. Reza, M. M. Nishat et al., “Azo-coated plasmonic pcf nanosensor for blood constituent detection in near infrared and visible spectrum,” Applied Physics A, vol. 128, no. 1, pp. 1–13, 2022. [13] C. Chen and J. Wang, “Optical biosensors: An exhaustive and comprehensive review,” Analyst, vol. 145, no. 5, pp. 1605–1628, 2020. [14] Y.-T. Chen, Y.-C. Lee, Y.-H. Lai, J.-C. Lim, N.-T. Huang, C.-T. Lin, and J.-J. Huang, “Review of integrated optical biosensors for point-of-care applications,” Biosensors, vol. 10, no. 12, p. 209, 2020. [15] A. Tereshchenko, M. Bechelany, R. Viter, V. Khranovskyy, V. Smyntyna, N. Starodub, and R. Yakimova, “Optical biosensors based on zno nanostruc tures: advantages and perspectives. a review,” Sensors and Actuators B: Chem ical, vol. 229, pp. 664–677, 2016. [16] X. Meng, F. Yang, H. Dong, L. Dou, and X. Zhang, “Recent advances in optical imaging of biomarkers in vivo,” Nano Today, vol. 38, p. 101156, 2021. [17] A. Syahir, K. Usui, K. Tomizaki, K. Kajikawa, and H. Mihara, “Label and label-free detection techniques for protein microarrays. microarrays 4: 228– 244,” 2015. [18] F. C. Dudak and ˙I. H. Boyacı, “Rapid and label-free bacteria detection by sur face plasmon resonance (spr) biosensors,” Biotechnology Journal: Healthcare Nutrition Technology, vol. 4, no. 7, pp. 1003–1011, 2009. [19] X. Fan, “Sensitive surface plasmon resonance label-free biosensor on a fiber end-facet,” Light: Science & Applications, vol. 11, no. 1, p. 325, 2022. [20] P. Zhang, G. Ma, W. Dong, Z. Wan, S. Wang, and N. Tao, “Plasmonic scatter ing imaging of single proteins and binding kinetics,” Nature Methods, vol. 17, no. 10, pp. 1010–1017, 2020. [21] H. F. Fakhruldeen, A. Z. Zahid, R. M. Jaafar, and A. Abdulkareem, “An overview of photonic crystal fiber (pcf),” Indian Journal of Natural Sciences, vol. 9, no. 53, pp. 0976–0997, 2019. 89 [22] M. S. Islam, J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser, B. W. Ng, and D. Abbott, “A modified hexagonal photonic crystal fiber for terahertz applica tions,” Optical Materials, vol. 79, pp. 336–339, 2018. [23] H. Ademgil and S. Haxha, “Pcf based sensor with high sensitivity, high bire fringence and low confinement losses for liquid analyte sensing applications,” Sensors, vol. 15, no. 12, pp. 31 833–31 842, 2015. [24] R. Lanza, J. Gearhart, B. Hogan, D. Melton, R. Pedersen, E. D. Thomas, and J. A. Thomson, Essentials of stem cell biology. Elsevier, 2005. [25] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray, “Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: a cancer journal for clinicians, vol. 71, no. 3, pp. 209–249, 2021. [26] D. Rodriguez-Abreu, A. Bordoni, and E. Zucca, “Epidemiology of hematologi cal malignancies,” Annals of oncology, vol. 18, pp. i3–i8, 2007. [27] R. L. Bertholf, “Disorders of the adrenal gland,” in Handbook of Diagnostic Endocrinology. Elsevier, 2021, pp. 103–156. [28] G. N. Sharma, R. Dave, J. Sanadya, P. Sharma, and K. Sharma, “Various types and management of breast cancer: an overview,” Journal of advanced pharma ceutical technology & research, vol. 1, no. 2, p. 109, 2010. [29] E. Dika, F. Scarfì, M. Ferracin, E. Broseghini, E. Marcelli, B. Bortolani, E. Cam pione, M. Riefolo, C. Ricci, and M. Lambertini, “Basal cell carcinoma: a com prehensive review,” International journal of molecular sciences, vol. 21, no. 15, p. 5572, 2020. [30] K. S. Okunade, “Human papillomavirus and cervical cancer,” Journal of Ob stetrics and Gynaecology, vol. 40, no. 5, pp. 602–608, 2020. [31] L. H. Einhorn, “Testicular cancer as a model for a curable neoplasm: The richard and hinda rosenthal foundation award lecture,” Cancer Research, vol. 41, no. 9_Part_1, pp. 3275–3280, 1981. [32] J. Cuzick, T. Powles, U. Veronesi, J. Forbes, R. Edwards, S. Ashley, and P. Boyle, “Overview of the main outcomes in breast-cancer prevention trials,” The Lancet, vol. 361, no. 9354, pp. 296–300, 2003. [33] K. Tajima, Y. Obata, H. Tamaki, M. Yoshida, Y.-T. Chen, M. J. Scanlan, L. J. Old, H. Kuwano, T. Takahashi, T. Takahashi et al., “Expression of cancer/testis (ct) antigens in lung cancer,” Lung cancer, vol. 42, no. 1, pp. 23–33, 2003. 90 [34] K. Glunde and Z. M. Bhujwalla, “Metabolic tumor imaging using magnetic resonance spectroscopy,” in Seminars in oncology, vol. 38, no. 1. Elsevier, 2011, pp. 26–41. [35] Y. Furusawa, Y. Fujiwara, P. Campbell, Q.-L. Zhao, R. Ogawa, M. Ali Hassan, Y. Tabuchi, I. Takasaki, A. Takahashi, and T. Kondo, “Dna double-strand breaks induced by cavitational mechanical effects of ultrasound in cancer cell lines,” Plos one, vol. 7, no. 1, p. e29012, 2012. [36] W. Weber and S. McCarthy, “Surface-plasmon resonance as a sensitive optical probe of metal-film properties,” Physical Review B, vol. 12, no. 12, p. 5643, 1975. [37] M. De, T. K. Gangopadhyay, and V. K. Singh, “Prospects of photonic crystal fiber as physical sensor: An overview,” Sensors, vol. 19, no. 3, p. 464, 2019. [38] V. Chaturvedi, D. Yadav, and M. Singh, Recent Advances in Biosen sor Technology: Volume 1, ser. Recent Advances in Biosensor Technol ogy Series. Bentham Science Publishers, 2023. [Online]. Available: https://books.google.com.bd/books?id=We69EAAAQBAJ [39] S. K. Raghuwanshi, S. Kumar, and R. Kumar, “Application of geometric-based spr sensors,” in Geometric Feature-Based Fiber Optic Surface Plasmon Reso nance Sensors. Springer, 2023, pp. 245–284. [40] M. T. I. Ansari, S. K. Raghuwanshi, and S. Kumar, “Recent advancement in fiber-optic based spr biosensor for food adulteration detection-a review,” IEEE Transactions on NanoBioscience, 2023. [41] A. Ehyaee, M. Mohammadi, M. Seifouri, and S. Olyaee, “Design and numerical investigation of a dual-core photonic crystal fiber refractive index sensor for cancer cells detection,” The European Physical Journal Plus, vol. 138, no. 2, p. 129, 2023. [42] M. Mollah, M. Yousufali, I. Ankan, M. Rahman, H. Sarker, and K. Chakrabarti, “Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. sens. bio-sens res. 29, 100344 (2020),” 2020. [43] N. Ayyanar, G. T. Raja, M. Sharma, and D. S. Kumar, “Photonic crystal fiber based refractive index sensor for early detection of cancer,” IEEE sensors jour nal, vol. 18, no. 17, pp. 7093–7099, 2018. [44] T. Parvin, K. Ahmed, A. M. Alatwi, and A. N. Z. Rashed, “Differential optical absorption spectroscopy-based refractive index sensor for cancer cell detection,” Optical Review, vol. 28, pp. 134–143, 2021. 91 [45] A. Habib, A. N. Z. Rashed, H. M. El-Hageen, and A. M. Alatwi, “Ex tremely sensitive photonic crystal fiber–based cancer cell detector in the tera hertz regime,” Plasmonics, pp. 1–10, 2021. [46] D. Rajeswari and A. A. Revathi, “Highly sensitive spr-based pcf bio sensor for plasma cell detection in human blood for the detection of early stage cancer,” Optik, vol. 258, p. 168897, 2022. [47] Y. Gamal, B. Younis, A. E.-S. Abd-Elkader, D. Furniss, M. Farries, S. Phang, T. M. Benson, A. B. Seddon, M. F. O. Hameed, and S. Obayya, “Mid-infrared water pollutant sensor based on spr-pcf,” Optical and Quantum Electronics, vol. 55, no. 11, p. 966, 2023. [48] A. Rifat, G. A. Mahdiraji, Y. Sua, Y. Shee, R. Ahmed, D. M. Chow, and F. M. Adikan, “Surface plasmon resonance photonic crystal fiber biosensor: a practi cal sensing approach,” IEEE Photonics Technology Letters, vol. 27, no. 15, pp. 1628–1631, 2015. [49] A. Yasli, “Cancer detection with surface plasmon resonance-based photonic crystal fiber biosensor,” Plasmonics, vol. 16, pp. 1605–1612, 2021. [50] S. Mittal, A. Saharia, Y. Ismail, F. Petruccione, A. V. Bourdine, O. G. Morozov, V. V. Demidov, J. Yin, G. Singh, and M. Tiwari, “Spiral shaped photonic crystal fiber-based surface plasmon resonance biosensor for cancer cell detection,” in Photonics, vol. 10, no. 3. MDPI, 2023, p. 230. [51] V. S. Chaudhary, D. Kumar, and S. Kumar, “Au-tio 2 coated photonic crystal fiber based spr refractometric sensor for detection of cancerous cells,” IEEE Transactions on NanoBioscience, 2022. [52] M. R. Sardar and M. Faisal, “Dual-core dual-polished pcf-spr sensor for cancer cell detection,” IEEE Sensors Journal, 2024. [53] M. Abdelghaffar, Y. Gamal, R. A. El-Khoribi, W. Soliman, Y. Badr, M. F. O. Hameed, and S. Obayya, “Cancer cell detection by plasmonic dual v-shaped pcf biosensor,” JOSA B, vol. 41, no. 1, pp. 222–229, 2024. [54] K. M. Ibrahimi, R. Kumar, and W. Pakhira, “Enhance the design and perfor mance analysis of a highly sensitive twin-core pcf spr biosensor with gold plat ing for the early detection of cancer cells,” Plasmonics, vol. 18, no. 3, pp. 995– 1006, 2023. [55] M. H. Pappu, A. Rahman, and M. A. Mollah, “An h-shaped exposed core surface plasmon resonance sensor and detection of cancer cells,” Plasmonics, pp. 1–17, 2024. 92 [56] S. Singh, B. Chaudhary, A. Upadhyay, and S. A. Taya, “Bottom side partially etched d-shaped pcf biosensor for early diagnosis of cancer cells,” The European Physical Journal Plus, vol. 138, no. 6, p. 511, 2023. [57] X. Yang, S. Hou, C. Xie, G. Wu, and Z. Yan, “High-performance photonic crystal fiber biosensor based on surface plasmon resonance for early cancer de tection,” Plasmonics, pp. 1–11, 2023. [58] S. Miller, Optical fiber telecommunications. Elsevier, 2012. [59] S. Sen, M. S. Islam, B. K. Paul, M. I. Islam, S. Chowdhury, K. Ahmed, M. R. Hasan, M. S. Uddin, and S. Asaduzzaman, “Ultra-low loss with single mode polymer-based photonic crystal fiber for thz waveguide,” Journal of Optical Communications, vol. 40, no. 4, pp. 411–417, 2019. [60] P. Lu, N. Lalam, M. Badar, B. Liu, B. T. Chorpening, M. P. Buric, and P. R. Ohodnicki, “Distributed optical fiber sensing: Review and perspective,” Applied Physics Reviews, vol. 6, no. 4, 2019. [61] T. Okoshi, Optical fibers. Elsevier, 2012. [62] J.-R. Lee, D. Dhital, and D.-J. Yoon, “Investigation of cladding and coating stripping methods for specialty optical fibers,” Optics and lasers in engineering, vol. 49, no. 3, pp. 324–330, 2011. [63] B. J. Skutnik, “How coating/polymer properties affect fiber/cable performance,” Polymer Engineering & Science, vol. 29, no. 17, pp. 1159–1164, 1989. [64] G. P. Agrawal, Fiber-optic communication systems. John Wiley & Sons, 2012. [65] S. Addanki, I. S. Amiri, and P. Yupapin, “Review of optical fibers-introduction and applications in fiber lasers,” Results in Physics, vol. 10, pp. 743–750, 2018. [66] S. Personick, “Review of fundamentals of optical fiber systems,” IEEE Journal on Selected Areas in Communications, vol. 1, no. 3, pp. 373–380, 1983. [67] P. Drexler and P. Fiala, “Optical fiber birefringence effects–sources, utilization and methods of suppression,” Recent Progress in Optical Fiber Research, pp. 127–150, 2012. [68] J. Castrellon-Uribe, Optical fiber sensors: an overview. IntechOpen London, UK:, 2012. [69] N. BIRLIGA and L. ¸SCERBAK, “Optical fibers: advantages and disadvan tages,” 2010. [70] J. Norgard and G. L. Best, “The electromagnetic spectrum,” in National Associ ation of Broadcasters Engineering Handbook. Routledge, 2017, pp. 3–10. 93 [71] P. Bartczak, “Spectrally tunable light sources for implementing computationally designed illuminations,” Ph.D. dissertation, Itä-Suomen yliopisto, 2016. [72] J. F. Blinn, “Light reflection functions for simulation of clouds and dusty sur faces,” Acm Siggraph Computer Graphics, vol. 16, no. 3, pp. 21–29, 1982. [73] M. L. Hawkins, “A generalization of snell’s law,” Ph.D. dissertation, Monterey, California. Naval Postgraduate School, 1990. [74] A. K. Ghatak and K. Thyagarajan, An introduction to fiber optics. Cambridge university press, 1998. [75] B. I. Bakare, A. B. Oghenekewe, and S. Orike, “Reduction of micro bend losses in optical fibers,” European Journal of Advances in Engineering and Technol ogy, vol. 7, no. 12, pp. 1–8, 2020. [76] S. Pissadakis and S. Selleri, Optofluidics, sensors and actuators in microstruc tured optical fibers. Woodhead Publishing, 2015. [77] L. Oyhenart and V. Vignéras, Overview of computational methods for photonic crystals. InTech, 2012. [78] P. Russell, “Photonic crystal fibers: a historical account,” IEEE Leos Newsletter, vol. 21, no. 5, pp. 11–15, 2007. [79] W. Gao, Q. Xu, X. Li, W. Zhang, J. Hu, Y. Li, X. Chen, Z. Yuan, M. Liao, T. Cheng et al., “Experimental investigation on supercontinuum generation by single, dual, and triple wavelength pumping in a silica photonic crystal fiber,” Applied optics, vol. 55, no. 33, pp. 9514–9520, 2016. [80] A. Aming, M. Uthman, R. Chitaree, W. Mohammed, and B. A. Rahman, “De sign and characterization of porous core polarization maintaining photonic crys tal fiber for thz guidance,” Journal of Lightwave Technology, vol. 34, no. 23, pp. 5583–5590, 2016. [81] N. Muduli and H. K. Padhy, “An optimized configuration of large mode field area pmma photonic crystal fiber with low bending loss: a new approach,” Jour nal of Materials Science: Materials in Electronics, vol. 27, pp. 1906–1912, 2016. [82] M. Islam, J. Rahman, and M. Islam, “Topas based low loss and dispersion flatten decagonal porous core photonic crystal fiber for terahertz communication,” Int. J. Microw. Opt. Technol, vol. 14, p. 62, 2019. [83] S. Sen, M. Abdullah-Al-Shafi, A. S. Sikder, M. S. Hossain, and M. M. Azad, “Zeonex based decagonal photonic crystal fiber (d-pcf) in the terahertz (thz) band for chemical sensing applications,” Sensing and Bio-Sensing Research, vol. 31, p. 100393, 2021. 94 [84] H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Applied Physics Letters, vol. 80, no. 15, pp. 2634–2636, 2002. [85] M. M. Rahman, F. A. Mou, M. I. H. Bhuiyan, and M. R. Islam, “Design and characterization of a circular sectored core cladding structured photonic crystal fiber with ultra-low eml and flattened dispersion in the thz regime,” Optical Fiber Technology, vol. 55, p. 102158, 2020. [86] M. A. Islam, M. R. Islam, A. M. Al Naser, F. Anzum, and F. Z. Jaba, “Square structured photonic crystal fiber based thz sensor design for human body protein detection,” Journal of Computational Electronics, vol. 20, pp. 377–386, 2021. [87] K. Kaneshima, Y. Namihira, N. Zou, H. Higa, and Y. Nagata, “Numerical in vestigation of octagonal photonic crystal fibers with strong confinement field,” IEICE transactions on electronics, vol. 89, no. 6, pp. 830–837, 2006. [88] M. Shanthi and R. Seyezhai, “Investigation and performance studies of optical properties of nanocomposite spiral-shaped photonic crystal fiber (s-pcf),” Plas monics, vol. 15, pp. 525–533, 2020. [89] S. Asaduzzaman, K. Ahmed, T. Bhuiyan, and T. Farah, “Hybrid photonic crystal fiber in chemical sensing,” SpringerPlus, vol. 5, no. 1, pp. 1–11, 2016. [90] E. Yablonovitch, “Photonic band-gap structures,” JOSA B, vol. 10, no. 2, pp. 283–295, 1993. [91] H. El Hamzaoui, Y. Ouerdane, L. Bigot, G. Bouwmans, B. Capoen, A. Bouken ter, S. Girard, and M. Bouazaoui, “Sol-gel derived ionic copper-doped mi crostructured optical fiber: a potential selective ultraviolet radiation dosimeter,” Optics express, vol. 20, no. 28, pp. 29 751–29 760, 2012. [92] B. Dabas and R. Sinha, “Dispersion characteristic of hexagonal and square lat tice chalcogenide as2se3 glass photonic crystal fiber,” Optics Communications, vol. 283, no. 7, pp. 1331–1337, 2010. [93] V. R. K. Kumar, A. George, W. Reeves, J. Knight, P. S. J. Russell, F. Omenetto, and A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad super continuum generation,” Optics Express, vol. 10, no. 25, pp. 1520–1525, 2002. [94] M. El-Amraoui, G. Gadret, J. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skri patchev, Y. Messaddeq, J. Troles, L. Brilland et al., “Microstructured chalco genide optical fibers from as 2 s 3 glass: Towards new ir broadband sources,” Optics express, vol. 18, no. 25, pp. 26 655–26 665, 2010. [95] W. Talataisong, R. Ismaeel, S. R. Sandoghchi, T. Rutirawut, G. Topley, M. Beresna, and G. Brambilla, “Novel method for manufacturing optical fiber: 95 extrusion and drawing of microstructured polymer optical fibers from a 3d printer,” optics express, vol. 26, no. 24, pp. 32 007–32 013, 2018. [96] S. Atakaramians, S. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “Thz porous fibers: design, fabrication and exper imental characterization,” Optics express, vol. 17, no. 16, pp. 14 053–14 062, 2009. [97] Z. Liu and H.-Y. Tam, “Fabrication and sensing applications of special mi crostructured optical fibers,” Selected Topics on Optical Fiber Technologies and Applications; Xu, F., Mou, C., Eds, pp. 1–20, 2017. [98] D. Pysz, I. Kujawa, R. St˛epien, M. Klimczak, A. Filipkowski, M. Franczyk, ´ L. Kociszewski, J. Bu´zniak, K. Harasny, and R. Buczy ´ nski, “Stack and draw ´ fabrication of soft glass microstructured fiber optics,” Bulletin of the Polish Academy of Sciences. Technical Sciences, vol. 62, no. 4, 2014. [99] A. L. Cruz, C. Cordeiro, and M. A. Franco, “3d printed hollow-core terahertz fibers,” Fibers, vol. 6, no. 3, p. 43, 2018. [100] V. V. Tuchin, J. S. Skibina, and A. V. Malinin, “Photonic crystal fibers in biophotonics,” in Optical Sensors and Biophotonics III, J. Popp, Ed., vol. 8311, International Society for Optics and Photonics. SPIE, 2011, p. 83110N. [Online]. Available: https://doi.org/10.1117/12.902647 [101] R. B. Schasfoort, Handbook of surface plasmon resonance. Royal Society of Chemistry, 2017. [102] Y. Yanase, T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, “Surface plasmon resonance for cell-based clini cal diagnosis,” Sensors, vol. 14, no. 3, pp. 4948–4959, 2014. [103] J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and ap plications,” Journal of Physics D: Applied Physics, vol. 45, no. 11, p. 113001, 2012. [104] F. S. Ligler and C. R. Taitt, Optical biosensors: today and tomorrow. Elsevier, 2011. [105] P. Singh, “Spr biosensors: historical perspectives and current challenges,” Sen sors and actuators B: Chemical, vol. 229, pp. 110–130, 2016. [106] E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plas mons excited by light,” Zeitschrift für Naturforschung A, vol. 23, no. 12, pp. 2135–2136, 1968. [107] W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annual review of physical chemistry, vol. 49, no. 1, pp. 569–638, 1998. 96 [108] Y. Zhao, Z.-q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sensors and Actuators B: Chemical, vol. 202, pp. 557–567, 2014. [109] M. S. Islam, C. M. Cordeiro, J. Sultana, R. A. Aoni, S. Feng, R. Ahmed, M. Dor raki, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “A hi-bi ultra-sensitive surface plasmon resonance fiber sensor,” IEEE access, vol. 7, pp. 79 085–79 094, 2019. [110] J. JARVIS, Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals, Building Materials, and Negative-Index Materials (Classic Reprint). 1kg Limited, 2019. [111] J. Blakemore, Solid State Physics. Cambridge University Press, 1985. [Online]. Available: https://books.google.com.bd/books?id=yLwIYiWo0VYC [112] S. Rizvi, Handbook of Photomask Manufacturing Technology. CRC Press, 2018. [Online]. Available: https://books.google.com.bd/books?id=I bLBQAAQBAJ [113] M. Alsawafta, M. Wahbeh, and V.-V. Truong, “Plasmonic modes and optical properties of gold and silver ellipsoidal nanoparticles by the discrete dipole ap proximation,” Journal of Nanomaterials, vol. 2012, pp. 33–33, 2012. [114] S. Sharmin, A. Bosu, and S. Akter, “A simple gold-coated photonic crystal fiber based plasmonic biosensor,” in 2018 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE). IEEE, 2018, pp. 1–4. [115] W. A. Murray and W. L. Barnes, “Plasmonic materials,” Advanced materials, vol. 19, no. 22, pp. 3771–3782, 2007. [116] P. Hlubina, M. Lunackova, and D. Ciprian, “Phase sensitive measurement of the wavelength dependence of the complex permittivity of a thin gold film using surface plasmon resonance,” Optical Materials Express, vol. 9, no. 3, pp. 992– 1001, 2019. [117] A. Matikainen, T. Nuutinen, T. Itkonen, S. Heinilehto, J. Puustinen, J. Hiltunen, J. Lappalainen, P. Karioja, and P. Vahimaa, “Atmospheric oxidation and carbon contamination of silver and its effect on surface-enhanced raman spectroscopy (sers),” Scientific reports, vol. 6, no. 1, p. 37192, 2016. [118] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser & photonics reviews, vol. 4, no. 6, pp. 795–808, 2010. [119] P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys ical review B, vol. 6, no. 12, p. 4370, 1972. 97 [120] A. D. Rakic, “Algorithm for the determination of intrinsic optical constants of ´ metal films: application to aluminum,” Applied optics, vol. 34, no. 22, pp. 4755– 4767, 1995. [121] A. Ikushima, T. Fujiwara, and K. Saito, “Silica glass: A material for photonics,” Journal of Applied Physics, vol. 88, no. 3, pp. 1201–1213, 2000. [122] P. V. Braun, “Materials chemistry in 3d templates for functional photonics,” Chemistry of Materials, vol. 26, no. 1, pp. 277–286, 2014. [123] P. Davenport, Z. Ma, W. Nation, J. Schirck, A. Morris, and M. Lambert, “Ther mal stability of silica for application in thermal energy storage,” in AIP Confer ence Proceedings, vol. 2445, no. 1. AIP Publishing, 2022. [124] H. S. Pradhan, “Characterization of a high-performance pcf-spr sensor for biomedical applications,” Current Analytical Chemistry, vol. 19, no. 8, pp. 585– 594, 2023. [125] A. K. Shakya and S. Singh, “Designing of a novel pcf biosensor having oc tagonal core and based on spr for chemical and heavy metal sensing,” in 2022 12th International conference on cloud computing, data science & engineering (Confluence). IEEE, 2022, pp. 171–175. [126] D. J. J. Hu and H. P. Ho, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Advances in Optics and Photonics, vol. 9, no. 2, pp. 257–314, 2017. [127] Y. Chen, Y. Yu, X. Li, Z. Tan, and Y. Geng, “Experimental comparison of fiber optic surface plasmon resonance sensors with multi metal layers and single sil ver or gold layer,” Plasmonics, vol. 10, pp. 1801–1808, 2015. [128] P. Ambhorkar, Z. Wang, H. Ko, S. Lee, K.-i. Koo, K. Kim, and D.-i. Cho, “Nanowire-based biosensors: from growth to applications,” Micromachines, vol. 9, no. 12, p. 679, 2018. [129] E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applica tions,” IEEE Journal of Quantum Electronics, vol. 48, no. 11, pp. 1403–1410, 2012. [130] A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. De La Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of ex tinction spectra with a finite-difference time-domain method,” Physical Review B, vol. 71, no. 8, p. 085416, 2005. 98 [131] H. Assi, Time-domain modeling of elastic and acoustic wave propagation in unbounded media, with application to metamaterials. University of Toronto (Canada), 2016. [132] A. Chen and F. Heismann, “Polarization control,” in Encyclopedic Handbook of Integrated Optics. CRC Press, 2018, pp. 306–318. [133] Z. Lin, S. Chen, and C. Lin, “Sensitivity improvement of a surface plasmon resonance sensor based on two-dimensional materials hybrid structure in visible region: A theoretical study,” Sensors, vol. 20, no. 9, p. 2445, 2020. [134] M. M. Hossain and M. Maniruzzaman, “Study of confinement loss in photonic crystal fiber,” in International Conference on Materials, Electronics & Informa tion Engineering, 2015. [135] M. R. Islam, A. Iftekhar, A. A. Hassan, S. Zaman, and M. A. Al Hosain, “Dou ble plasmonic peak shift sensitivity: an analysis of a highly sensitive lspr-pcf sensor for a diverse range of analyte detection,” Applied Physics A, vol. 129, no. 8, p. 571, 2023. [136] M. A. Jabin, K. Ahmed, M. J. Rana, B. K. Paul, M. Islam, D. Vigneswaran, and M. S. Uddin, “Surface plasmon resonance based titanium coated biosensor for cancer cell detection,” IEEE Photonics Journal, vol. 11, no. 4, pp. 1–10, 2019. [137] Q. Zhao, G. Wen, Z. Liu, Y. Fan, G. Zou, L. Li, R. Zheng, S. P. Ringer, and H.- K. Mao, “Synthesis of dense, single-crystalline cro2 nanowire arrays using aao template-assisted chemical vapor deposition,” Nanotechnology, vol. 22, no. 12, p. 125603, 2011. [138] M. Rezapour Sarabi, S. A. Nakhjavani, and S. Tasoglu, “3d-printed micronee dles for point-of-care biosensing applications,” Micromachines, vol. 13, no. 7, p. 1099, 2022. [139] E. Sokullu, Z. L. Cücük, M. R. Sarabi, M. T. Birtek, H. S. Bagheri, and S. Tasoglu, “Microfluidic invasion chemotaxis platform for 3d neurovascular co-culture,” Fluids, vol. 7, no. 7, p. 238, 2022. 9 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2392
dc.description Supervised by Dr. Md Rezaul Hoque Khan, Professor, Department of Electrical and Electronic Engineering (EEE) Islamic University of Technology (IUT) Board Bazar, Gazipur, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Master of Science in Electrical and Electronic Engineering, 2024 en_US
dc.description.abstract This thesis work proposes a novel design for a Surface Plasmon Resonance-based Photonic Crystal Fiber (SPR-PCF) biosensor featuring a square cladding shape and utilizing gold nanowires as plasmonic material for the detection of six types of cancer cells with high sensitivity. Given the global impact of cancer as a leading cause of mortality, early detection is crucial for effective treatment. Conventional cancer detection methods are often costly and time-consuming, motivating the development of biosensor technologies. SPR-PCF biosensors can detect changes in the refractive index (RI) of analytes. Normal cells and cancer cells exhibit different RI due to differences in cell structure. The objective of this thesis work is to propose a new SPR-PCF biosensor design capable of distinguishing cancerous cells from normal cells based on these RI variations with high sensitivity. The proposed SPR-PCF biosensor’s configuration was designed and analyzed using the Finite Element Method (FEM) implemented in COMSOL v5.5. The simulation utilized extremely fine mesh elements to ensure the utmost accuracy. Excitation between the core and plasmonic modes is achieved using Gold (Au) nanowires. Wavelength sensitivity of the proposed biosensor is determined by assessing the resonance wavelength shift between samples of normal and cancerous cells. Simultaneously, the measurement of amplitude sensitivity is accomplished through a comparison of the amplitudes associated with their respective confinement losses. The proposed SPR-PCF biosensor achieved exceptionally high wavelength sensitivity of 6500 nm/RIU, 14583.33 nm/RIU, 16428.57 nm/RIU, 25714.28 nm/RIU, 32857.14 nm/RIU and 35714.28 nm/RIU for Skin Cancer, Cervical Cancer, Blood Cancer, Adrenal Gland Cancer, Breast Type-1 Cancer and Breast Type- 2 Cancer respectively. Additionally, the amplitude sensitivity values were found to be −273.16 RIU−1, −286.58 RIU−1, −455.59 RIU−1, −698.76 RIU−1, −1172.72 RIU−1 and −1971.30 RIU−1 for the same cancer types, respectively. The biosensor exhibits the capability to detect subtle refractive index variations on the order of 10^6 based on the resolution results. The design of the proposed SPR-PCF biosensor can be readily manufactured using contemporary fabrication techniques. The proposed fabrication steps involve using the stack-and-draw technique in combination with the template-assisted Chemical Vapor Deposition (CVD) technique. In summary, the remarkable sensitivity exhibited by the proposed SPR-PCF biosensor shows significant potential for the detection of cancer cells. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Elecrtonics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.subject SPR-PCF Biosensor; Cancer Cell; Confinement Loss; Amplitude Sensitivity; Wavelength Sensitivity. en_US
dc.title Detection of Cancer Cell using SPR-PCF Biosensor en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics