Probabilistic Modeling of Source and Load Uncertainties for Optimal Sizing of Hybrid Renewable Energy System

Show simple item record

dc.contributor.author Sakib, Taiyeb Hasan
dc.date.accessioned 2025-03-13T07:38:38Z
dc.date.available 2025-03-13T07:38:38Z
dc.date.issued 2024-03-30
dc.identifier.citation [1] P. Roy, J. He, T. Zhao, and Y. V. Singh, “Recent Advances of Wind-Solar Hybrid Renewable Energy Systems for Power Generation: A Review,” IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 81–104, 2022, doi: 10.1109/OJIES.2022.3144093. [2] “A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques - MITS Gwalior.” Accessed: Feb. 06, 2024. [Online]. Available: https://web.mitsgwalior.in/research/comprehensive-review-on-optimization-of hybrid-renewable-energy-systems-using-various-optimization-techniques [3] M. K. Deshmukh and S. S. Deshmukh, “Modeling of hybrid renewable energy systems,” Renewable and Sustainable Energy Reviews, vol. 12, no. 1, pp. 235–249, Jan. 2008, doi: 10.1016/j.rser.2006.07.011. [4] “Hybrid Energy System - an overview | ScienceDirect Topics.” Accessed: Feb. 06, 2024. [Online]. Available: https://www.sciencedirect.com/topics/engineering/hybrid-energy system [5] G. K. Sakki, I. Tsoukalas, P. Kossieris, C. Makropoulos, and A. Efstratiadis, “Stochastic simulation-optimization framework for the design and assessment of renewable energy systems under uncertainty,” Renewable and Sustainable Energy Reviews, vol. 168, p. 112886, Oct. 2022, doi: 10.1016/j.rser.2022.112886. [6] A. R. Jordehi, “How to deal with uncertainties in electric power systems? A review,” Renewable and Sustainable Energy Reviews, vol. 96, pp. 145–155, Nov. 2018, doi: 10.1016/j.rser.2018.07.056. [7] M. Rezaei, U. Dampage, B. K. Das, O. Nasif, P. F. Borowski, and M. A. Mohamed, “Investigating the Impact of Economic Uncertainty on Optimal Sizing of Grid-Independent Hybrid Renewable Energy Systems,” Processes, vol. 9, no. 8, Art. no. 8, Aug. 2021, doi: 10.3390/pr9081468. [8] A. A. Khan, A. F. Minai, R. K. Pachauri, and H. Malik, “Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review,” Energies, vol. 15, no. 17, Art. no. 17, Jan. 2022, doi: 10.3390/en15176249. [9] A. L. Bukar, C. W. Tan, and K. Y. Lau, “Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm,” Solar Energy, vol. 188, pp. 685–696, Aug. 2019, doi: 10.1016/j.solener.2019.06.050. 63 [10] M. A. M. Ramli, H. R. E. H. Bouchekara, and A. S. Alghamdi, “Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm,” Renewable Energy, vol. 121, pp. 400–411, Jun. 2018, doi: 10.1016/j.renene.2018.01.058. [11] A. Madhlopa, D. Sparks, S. Keen, M. Moorlach, P. Krog, and T. Dlamini, “Optimization of a PV–wind hybrid system under limited water resources,” Renewable and Sustainable Energy Reviews, vol. 47, pp. 324–331, Jul. 2015, doi: 10.1016/j.rser.2015.03.051. [12] T. Orhan, G. M. Shafiullah, A. Stojcevski, and A. Oo, “A feasibility study on microgrid for various Islands in Australia,” in 2014 Australasian Universities Power Engineering Conference (AUPEC), Sep. 2014, pp. 1–8. doi: 10.1109/AUPEC.2014.6966604. [13] W. Feng et al., “A review of microgrid development in the United States – A decade of progress on policies, demonstrations, controls, and software tools,” Applied Energy, vol. 228, pp. 1656–1668, Oct. 2018, doi: 10.1016/j.apenergy.2018.06.096. [14] “United Nations Development Programme,” UNDP. Accessed: Jan. 22, 2024. [Online]. Available: https://www.undp.org/sustainable-development-goals [15] “SDG Tracker.” Accessed: Jan. 22, 2024. [Online]. Available: https://sdg.gov.bd/page/indicator-wise/5/442/3/0#1 [16] B. K. Das and F. Zaman, “Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection,” Energy, vol. 169, pp. 263–276, Feb. 2019, doi: 10.1016/j.energy.2018.12.014. [17] M. S. Islam, R. Akhter, and M. A. Rahman, “A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural off-grid areas or not?,” Energy, vol. 145, pp. 338–355, Feb. 2018, doi: 10.1016/j.energy.2017.12.125. [18] A. J. Nahian, “Techno-Economic Analysis of a Hybrid Mini-grid in Rural Areas: A Case Study of Bangladesh,” Journal of Energy Research and Reviews, Accessed: Jan. 27, 2024. [Online]. Available: https://www.academia.edu/51632803/Techno_Economic_Analysis_of_a_Hybrid_Mini_g rid_in_Rural_Areas_A_Case_Study_of_Bangladesh [19] F. Rashid, M. E. Hoque, M. Aziz, T. N. Sakib, M. T. Islam, and R. M. Robin, “Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh,” Energies, vol. 14, no. 18, Art. no. 18, Jan. 2021, doi: 10.3390/en14185794. 64 [20] B. Bala and S. A. Siddique, “Optimal design of a PV-diesel hybrid system for electrification of an isolated island—Sandwip in Bangladesh using genetic algorithm,” Energy for Sustainable Development, vol. 13, no. 3, pp. 137–142, Sep. 2009, doi: 10.1016/j.esd.2009.07.002. [21] M. R. Islam, H. Akter, H. O. R. Howlader, and T. Senjyu, “Optimal Sizing and Techno Economic Analysis of Grid-Independent Hybrid Energy System for Sustained Rural Electrification in Developing Countries: A Case Study in Bangladesh,” Energies, vol. 15, no. 17, Art. no. 17, Jan. 2022, doi: 10.3390/en15176381. [22] H. Akter, H. O. R. Howlader, A. Nakadomari, M. R. Islam, A. Y. Saber, and T. Senjyu, “A Short Assessment of Renewable Energy for Optimal Sizing of 100% Renewable Energy Based Microgrids in Remote Islands of Developing Countries: A Case Study in Bangladesh,” Energies, vol. 15, no. 3, Art. no. 3, Jan. 2022, doi: 10.3390/en15031084. [23] Md. F. Ishraque, Sk. A. Shezan, J. N. Nur, and Md. S. Islam, “Optimal Sizing and Assessment of an Islanded Photovoltaic-Battery-Diesel Generator Microgrid Applicable to a Remote School of Bangladesh,” Engineering Reports, vol. 3, no. 1, p. e12281, 2021, doi: 10.1002/eng2.12281. [24] Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and R. Seethapathy, “Optimal renewable resources mix for distribution system energy loss minimization,” IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 360–370, 2010, doi: 10.1109/TPWRS.2009.2030276. [25] P. Kayal and C. K. Chanda, “Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network,” Renewable Energy, vol. 75, pp. 173–186, Mar. 2015, doi: 10.1016/j.renene.2014.10.003. [26] A. Soroudi, M. Aien, and M. Ehsan, “A probabilistic modeling of photo voltaic modules and wind power generation impact on distribution networks,” IEEE Systems Journal, vol. 6, no. 2, pp. 254–259, 2012, doi: 10.1109/JSYST.2011.2162994. [27] R. Dufo-López, E. Pérez-Cebollada, J. L. Bernal-Agustín, and I. Martínez-Ruiz, “Optimisation of energy supply at off-grid healthcare facilities using Monte Carlo simulation,” Energy Conversion and Management, vol. 113, pp. 321–330, Apr. 2016, doi: 10.1016/j.enconman.2016.01.057. [28] S. Shojaabadi, S. Abapour, M. Abapour, and A. Nahavandi, “Simultaneous planning of plug-in hybrid electric vehicle charging stations and wind power generation in distribution networks considering uncertainties,” Renewable Energy, vol. 99, pp. 237–252, Dec. 2016, doi: 10.1016/j.renene.2016.06.032. 65 [29] Z. Liu, F. Wen, and G. Ledwich, “Optimal siting and sizing of distributed generators in distribution systems considering uncertainties,” IEEE Transactions on Power Delivery, vol. 26, no. 4, pp. 2541–2551, 2011, doi: 10.1109/TPWRD.2011.2165972. [30] A. Y. Saber and G. K. Venayagamoorthy, “Resource scheduling under uncertainty in a smart grid with renewables and plug-in vehicles,” IEEE Systems Journal, vol. 6, no. 1, pp. 103–109, 2012, doi: 10.1109/JSYST.2011.2163012. [31] S. Rajanna and R. P. Saini, “Development of optimal integrated renewable energy model with battery storage for a remote Indian area,” Energy, vol. 111, pp. 803–817, Sep. 2016, doi: 10.1016/j.energy.2016.06.005. [32] P. Paliwal, N. P. Patidar, and R. K. Nema, “Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using Particle Swarm Optimization,” Renewable Energy, vol. 63, pp. 194–204, Mar. 2014, doi: 10.1016/j.renene.2013.09.003. [33] A. F. Güven, N. Yörükeren, and M. M. Samy, “Design optimization of a stand-alone green energy system of university campus based on Jaya-Harmony Search and Ant Colony Optimization algorithms approaches,” Energy, vol. 253, p. 124089, Aug. 2022, doi: 10.1016/j.energy.2022.124089. [34] K. Ullah, Q. Jiang, G. Geng, S. Rahim, and R. A. Khan, “Optimal Power Sharing in Microgrids Using the Artificial Bee Colony Algorithm,” Energies, vol. 15, no. 3, Art. no. 3, Jan. 2022, doi: 10.3390/en15031067. [35] M. A. Mohamed, A. M. Eltamaly, A. I. Alolah, and A. Y. Hatata, “A novel framework based cuckoo search algorithm for sizing and optimization of grid-independent hybrid renewable energy systems,” International Journal of Green Energy, vol. 16, no. 1, pp. 86– 100, Jan. 2019, doi: 10.1080/15435075.2018.1533837. [36] A. A. Al-Shamma’a, H. M. Hussein Farh, A. M. Noman, A. M. Al-Shaalan, and A. Alkuhayli, “Optimal Sizing of a Hybrid Renewable Photovoltaic-Wind System-Based Microgrid Using Harris Hawk Optimizer,” International Journal of Photoenergy, vol. 2022, p. e4825411, Jun. 2022, doi: 10.1155/2022/4825411. [37] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimed Tools Appl, vol. 80, no. 5, pp. 8091–8126, Feb. 2021, doi: 10.1007/s11042-020-10139-6. [38] H. Chen, C. Li, M. Mafarja, A. A. Heidari, Y. Chen, and Z. Cai, “Slime mould algorithm: a comprehensive review of recent variants and applications,” International 66 Journal of Systems Science, vol. 54, no. 1, pp. 204–235, Jan. 2023, doi: 10.1080/00207721.2022.2153635. [39] A. F. Güven, “Dandelion-Optimizer based power sharing in hybrid renewable energy system optimum sizing with EV: grid-connected, wind, solar, battery, electric vehicles”. [40] A. Bouaouda and Y. Sayouti, “Design and Economic Analysis of a Stand-alone microgrid system using Dandelion Optimizer - A rural case in Southwest Morocco,” in 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), May 2023, pp. 1–8. doi: 10.1109/IRASET57153.2023.10152945. [41] S. Zhao, T. Zhang, S. Ma, and M. Chen, “Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications,” Engineering Applications of Artificial Intelligence, vol. 114, p. 105075, Sep. 2022, doi: 10.1016/j.engappai.2022.105075. [42] B. K. Das, R. Hassan, M. S. H. K. Tushar, F. Zaman, M. Hasan, and P. Das, “Techno economic and environmental assessment of a hybrid renewable energy system using multi objective genetic algorithm: A case study for remote Island in Bangladesh,” Energy Conversion and Management, vol. 230, p. 113823, Feb. 2021, doi: 10.1016/j.enconman.2020.113823. [43] M. R. Abdussami, A. Ahmed, and T. Hasan Sakib, “A novel approach for optimal energy resources mixing in nuclear-renewable microgrids using probabilistic energy modelling method,” Energy Conversion and Management, vol. 282, p. 116862, Apr. 2023, doi: 10.1016/j.enconman.2023.116862. [44] K. Kantho, “Mymensingh to experience intense power cuts for next 2 days.” Accessed: Sep. 25, 2023. [Online]. Available: https://www.kalerkantho.com/english/online/national/2023/05/25/53357 [45] “ময়মনস িংহ পল্লী সিদ্যুৎ সমসি-১.” Accessed: Sep. 25, 2023. [Online]. Available: https://pbs1.mymensingh.gov.bd/ [46] R. Paul, S. Varadhan, and S. Varadhan, “Bangladesh suffers widespread power outages during relentless heat,” Reuters, Apr. 20, 2023. Accessed: Sep. 25, 2023. [Online]. Available: https://www.reuters.com/world/asia-pacific/bangladesh-suffers-widespread power-outages-during-relentless-heat-2023-04-20/ [47] K. M. Ahsan-uz-Zaman, A. Wahed, A. S. M. Sayam, O. Faruk, and B. C. Sarker, “Solar Biomass Hybrid System, an Approach for Rural Electrifiation in Bangladesh,” in 2018 4th 67 International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT), Dhaka, Bangladesh: IEEE, Sep. 2018, pp. 187–192. doi: 10.1109/CEEICT.2018.8628102. [48] “Phulpur Upazila - Banglapedia.” Accessed: Feb. 03, 2024. [Online]. Available: https://en.banglapedia.org/index.php/Phulpur_Upazila [49] Accessed: Feb. 03, 2024. [Online]. Available: https://balikhaup.mymensingh.gov.bd/en/site/page/Fhz2-%E0%A6%8F%E0%A6%95- %E0%A6%A8%E0%A6%9C%E0%A6%B0%E0%A7%87- %E0%A6%AC%E0%A6%BE%E0%A6%B2%E0%A6%BF%E0%A6%96%E0%A6%B E%E0%A6%81 [50] “Phulpur Paurashava Master Plan English 2011-2031.pdf.” Accessed: Feb. 03, 2024. [Online]. Available: http://oldweb.lged.gov.bd/UploadedDocument/UnitPublication/10/1402/Phulpur%20Paur ashava%20Master%20Plan%20English%202011-2031.pdf [51] “JRC Photovoltaic Geographical Information System (PVGIS) - European Commission.” Accessed: Sep. 25, 2023. [Online]. Available: https://re.jrc.ec.europa.eu/pvg_tools/en/ [52] “2021-06-22-04-52-31df1f5baf3ce33a4d5737629a391869.pdf.” Accessed: Feb. 03, 2024. [Online]. Available: https://sreda.portal.gov.bd/sites/default/files/files/sreda.portal.gov.bd/page/049ce602_420 3_49ac_8237_59e6776e255f/2021-06-22-04-52- 31df1f5baf3ce33a4d5737629a391869.pdf [53] S. Singh, M. Singh, and S. C. Kaushik, “Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system,” Energy Conversion and Management, vol. 128, pp. 178–190, Nov. 2016, doi: 10.1016/j.enconman.2016.09.046. [54] M. M. Gamil et al., “Optimal sizing of a residential microgrid in Egypt under deterministic and stochastic conditions with PV/WG/Biomass Energy integration,” f, vol. 9, no. 3, pp. 483–515, 2021, doi: 10.3934/energy.2021024. [55] “Power Grid Company of Bangladesh Ltd.” Accessed: Sep. 25, 2023. [Online]. Available: http://pgcb.gov.bd/site/download/b01f94e0-dfdb-4e31-b741- 100511ddc0c5/http%3A%2F%2Fpgcb.gov.bd%2Fsite%2Fdownload%2Fb01f94e0-dfdb 4e31-b741-100511ddc0c5%2F- 68 [56] T. Chowdhury et al., “Sizing of an Island Standalone Hybrid System Considering Economic and Environmental Parameters: A Case Study,” Energies, vol. 15, no. 16, Art. no. 16, Jan. 2022, doi: 10.3390/en15165940. [57] H. A.Gabbar, M. R. Abdussami, and M. Adham, “Optimal Planning of Nuclear Renewable Micro-Hybrid Energy System by Particle Swarm Optimization,” IEEE Access, vol. 8, Oct. 2020, doi: 10.1109/ACCESS.2020.3027524. [58] M. A. Hossain, A. Ahmed, S. R. Tito, R. Ahshan, T. H. Sakib, and S. H. Nengroo, “Multi-Objective Hybrid Optimization for Optimal Sizing of a Hybrid Renewable Power System for Home Applications,” Energies, vol. 16, no. 1, Art. no. 1, Jan. 2023, doi: 10.3390/en16010096. [59] C. García et al., “Power generation estimation from wheat straw in Mexico,” presented at the ENERGY AND SUSTAINABILITY 2015, Medellin, Colombia, Sep. 2015, pp. 101– 110. doi: 10.2495/ESUS150091. [60] “Hydrogen Production: Biomass Gasification,” Energy.gov. Accessed: Sep. 27, 2023. [Online]. Available: https://www.energy.gov/eere/fuelcells/hydrogen-production-biomass gasification [61] H. Yang, W. Zhou, L. Lu, and Z. Fang, “Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm,” Solar Energy, vol. 82, no. 4, pp. 354–367, Apr. 2008, doi: 10.1016/j.solener.2007.08.005. [62] S. R. Tito, T. T. Lie, and T. N. Anderson, “Optimal sizing of a wind-photovoltaic-battery hybrid renewable energy system considering socio-demographic factors,” Solar Energy, vol. 136, pp. 525–532, Oct. 2016, doi: 10.1016/j.solener.2016.07.036. [63] R. Hemmati, R.-A. Hooshmand, and A. Khodabakhshian, “Market based transmission expansion and reactive power planning with consideration of wind and load uncertainties,” Renewable and Sustainable Energy Reviews, vol. 29, pp. 1–10, Jan. 2014, doi: 10.1016/j.rser.2013.08.062. [64] S. S. Reddy, “Optimal scheduling of thermal-wind-solar power system with storage,” Renewable Energy, vol. 101, pp. 1357–1368, Feb. 2017, doi: 10.1016/j.renene.2016.10.022. [65] M. Esmaeili, M. Sedighizadeh, and M. Esmaili, “Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty,” Energy, vol. 103, pp. 86–99, May 2016, doi: 10.1016/j.energy.2016.02.152. 69 [66] M. H. Moradi and M. Eskandari, “A hybrid method for simultaneous optimization of DG capacity and operational strategy in microgrids considering uncertainty in electricity price forecasting,” Renewable Energy, vol. 68, pp. 697–714, Aug. 2014, doi: 10.1016/j.renene.2014.03.001. [67] A. Soroudi, “Possibilistic-scenario model for DG impact assessment on distribution networks in an uncertain environment,” IEEE Transactions on Power Systems, vol. 27, no. 3, pp. 1283–1293, 2012, doi: 10.1109/TPWRS.2011.2180933. [68] Rs, H. Stark, and J. W. Woods, “Probability, Random Processes and Estimation Theory for Engineers.,” Journal of the American Statistical Association, vol. 90, no. 430, p. 810, Jun. 1995, doi: 10.2307/2291115. [69] R. Hemmati, R.-A. Hooshmand, and N. Taheri, “Distribution network expansion planning and DG placement in the presence of uncertainties,” International Journal of Electrical Power & Energy Systems, vol. 73, pp. 665–673, Dec. 2015, doi: 10.1016/j.ijepes.2015.05.024. [70] “Stochastic transmission expansion planning incorporating reliability solved using SFLA meta-heuristic optimization technique.” Accessed: Sep. 30, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/7485812?arnumber=7485812 [71] S. Moghaddam, M. Bigdeli, and M. Moradlou, “Optimal design of an off-grid hybrid renewable energy system considering generation and load uncertainty: the case of Zanjan city, Iran,” SN Appl. Sci., vol. 3, no. 8, p. 732, Jul. 2021, doi: 10.1007/s42452-021-04718- x. [72] N. Behera, “Chapter 8 - Analysis of microarray gene expression data using information theory and stochastic algorithm,” in Handbook of Statistics, vol. 43, A. S. R. Srinivasa Rao and C. R. Rao, Eds., in Principles and Methods for Data Science, vol. 43. , Elsevier, 2020, pp. 349–378. doi: 10.1016/bs.host.2020.02.002. [73] “Study of Typical Meteorological Years and Their Effect on Building Energy and Renewable Energy Simulations - ProQuest.” Accessed: Oct. 03, 2023. [Online]. Available: https://www.proquest.com/openview/5c0f703120c5c2886a90a2d653e7e955/1?pq origsite=gscholar&cbl=34619 [74] T. Ali, S. A. Malik, A. Daraz, S. Aslam, and T. Alkhalifah, “Dandelion Optimizer-Based Combined Automatic Voltage Regulation and Load Frequency Control in a Multi-Area, Multi-Source Interconnected Power System with Nonlinearities,” Energies, vol. 15, no. 22, Art. no. 22, Jan. 2022, doi: 10.3390/en15228499. 70 [75] A. Elhammoudy et al., “Dandelion Optimizer algorithm-based method for accurate photovoltaic model parameter identification,” Energy Conversion and Management: X, vol. 19, p. 100405, Jul. 2023, doi: 10.1016/j.ecmx.2023.100405. [76] “Brownian Motion and Stochastic Calculus | SpringerLink.” Accessed: Oct. 07, 2023. [Online]. Available: https://link.springer.com/book/10.1007/978-1-4612-0949-2 [77] “LÉVY FLIGHT SUPERDIFFUSION: AN INTRODUCTION | International Journal of Bifurcation and Chaos.” Accessed: Oct. 07, 2023. [Online]. Available: https://www.worldscientific.com/doi/10.1142/S0218127408021877 [78] A. Kamaruzaman, A. Zain, S. Yusuf, and A. Udin, “Levy Flight Algorithm for Optimization Problems – A Literature Review,” Applied Mechanics and Materials, vol. 421, Sep. 2013, doi: 10.4028/www.scientific.net/AMM.421.496. [79] S. Li, H. Chen, M. Wang, A. A. Heidari, and S. Mirjalili, “Slime mould algorithm: A new method for stochastic optimization,” Future Generation Computer Systems, vol. 111, pp. 300–323, Oct. 2020, doi: 10.1016/j.future.2020.03.055. [80] F. S. Gharehchopogh, A. Ucan, T. Ibrikci, B. Arasteh, and G. Isik, “Slime Mould Algorithm: A Comprehensive Survey of Its Variants and Applications,” Arch Comput Methods Eng, vol. 30, no. 4, pp. 2683–2723, 2023, doi: 10.1007/s11831-023-09883-3. [81] K. Deb, “Introduction to Genetic Algorithms for Engineering Optimization,” in New Optimization Techniques in Engineering, vol. 141, in Studies in Fuzziness and Soft Computing, vol. 141. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 13–51. doi: 10.1007/978-3-540-39930-8_2. [82] D. E. Goldberg, “Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking”. [83] F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis”. [84] J. Antonisse, “A new interpretation of schema notation that overturns the binary encoding constraint,” in Proceedings of the third international conference on Genetic algorithms, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Dec. 1989, pp. 86–91. [85] C. Janikow and Z. Michalewicz, “An Experimental Comparison of Binary and Floating Point Representations in Genetic Algorithms,” presented at the International Conference on Genetic Algorithms, 1991. Accessed: Oct. 07, 2023. [Online]. Available: https://www.semanticscholar.org/paper/An-Experimental-Comparison-of-Binary-and Floating-Janikow-Michalewicz/4f0c0a13bfeb05a3dedccf83a7fb6e1c00117078 71 [86] “Beta Distribution Applet/Calculator.” Accessed: Feb. 07, 2024. [Online]. Available: https://homepage.stat.uiowa.edu/~mbognar/applets/beta.html [87] R. Horri and H. M. Roudsari, “Distributed Energy Sources Planning for Micro-Grid Using Slime Mould Algorithm Considering the Uncertainty of the Resources,” in 2021 25th Electrical Power Distribution Conference (EPDC), Aug. 2021, pp. 23–29. doi: 10.1109/EPDC53015.2021.9610772. [88] E. Lázár, D. Petreuş, R. Etz, and T. Pătărău, “Minimization of operational cost for an Islanded Microgrid using a real coded Genetic Algorithm and a Mixed Integer linear Programming method,” in 2017 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), May 2017, pp. 693–698. doi: 10.1109/OPTIM.2017.7975049. [89] G. Nadakuditi, U. Mohan Rao, V. Bathina, and S. Pandi, “Economic Load Dispatch in Microgrids Using Real-Coded Genetic Algorithm,” in Soft Computing in Data Analytics, J. Nayak, A. Abraham, B. M. Krishna, G. T. Chandra Sekhar, and A. K. Das, Eds., Singapore: Springer, 2019, pp. 377–386. doi: 10.1007/978-981-13-0514-6_38. [90] A. Maleki, M. G. Khajeh, and M. Ameri, “Optimal sizing of a grid independent hybrid renewable energy system incorporating resource uncertainty, and load uncertainty,” International Journal of Electrical Power & Energy Systems, vol. 83, pp. 514–524, Dec. 2016, doi: 10.1016/j.ijepes.2016.04.008 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2396
dc.description Supervised by Prof. Dr. Ashik Ahmed, Department of Electrical and Electronic Engineering (EEE) Islamic University of Technology (IUT) Board Bazar, Gazipur, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Master of Science in Electrical and Electronic Engineering, 2024 en_US
dc.description.abstract Hybrid Renewable Energy System (HRES) has become a popular alternative for locations restricted to national grid connection due to geographical limitations. The study investigates the available renewable resources of a remote village in Mymensingh district of Bangladesh to propose and evaluate optimal sizing and cost of a grid independent HRES. The intermittency of solar irradiance and uncertain variation in load demand are taken into account by adopting probabilistic scenario-based analysis (SBA). Beta distribution and Gaussian distribution are considered for solar irradiance and load uncertainties, respectively. Probability distribution function (PDF) and Cumulative probability distribution function (CDF) are calculated defining different states. Roulette Wheel mechanism generates multiple probabilistic scenarios, load generation models, from PDF and CDF. Objective function is formulated to minimize the total system cost (TSC) for the load generation models generated under defined constraints. Dandelion optimizer (DO), a relatively recent and unexplored metaheuristic algorithm along with two other popular optimization algorithms, Slime Mould Algorithm (SMA) and Real Coded Genetic Algorithm (RCGA) are applied to size the components for different probabilistic scenarios generated by Roulette Wheel. DO outperformed SMA and RCGA in terms of global minima finding and computation time. The statistical summary provides a reasonable estimation about the cost and sizing of the proposed HRES. Analyzing the available resource data and using complementary algorithms ensure accuracy in the estimation of size and cost of the proposed HRES in study area. The algorithms' computation of total system cost, indicating a close proximity, validates the research findings. This research marks the initial effort to achieve optimal sizing of Hybrid Renewable Energy Systems (HRES) by taking into account the uncertainties of source and load demand, within the context of Bangladesh en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Elecrtonics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Probabilistic Modeling of Source and Load Uncertainties for Optimal Sizing of Hybrid Renewable Energy System en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics