dc.identifier.citation |
[1] N. R. Bhowmik, M. Arifuzzaman, M. R. H. Mondal, and M. S. Islam, “Bangla text sentiment analysis using supervised machine learning with extended lexicon dictionary,” Natural Language Processing Research, vol. 1, pp. 34–45, 2021. [Online]. Available: https://doi.org/10.2991/nlpr.d.210316.001 [2] Y. Y. Tan, C.-O. Chow, J. Kanesan, J. H. Chuah, and Y. Lim, “Sentiment analysis and sarcasm detection using deep multi-task learning,” p. 2213–2237, Mar. 2023. [Online]. Available: http://dx.doi.org/10.1007/s11277-023-10235-4 [3] V. L. Durga and A. M. Sowjanya, “Sentiment analysis on bangla youtube com ments using machine learning techniques,” Journal of Emerging Technologies and Innovative Research, 2020. [4] X.-y. Fu, C. Chen, M. T. R. Laskar, S. Gardiner, P. Hiranandani, and S. B. Tn, “Entity-level sentiment analysis in contact center telephone conversations,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track. Abu Dhabi, UAE: Association for Computational Linguistics, Dec. 2022, pp. 484–491. [Online]. Available: https://aclanthology.org/2022.emnlp-industry.49 [5] O. Toledo-Ronen, M. Orbach, Y. Katz, and N. Slonim, “Multi-domain targeted sentiment analysis,” in Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Hu man Language Technologies. Seattle, United States: Association for Computational Linguistics, Jul. 2022, pp. 2751–2762. [Online]. Available: https://aclanthology.org/2022.naacl-main.198 [6] N. R. Bhowmik, M. Arifuzzaman, and M. R. H. Mondal, “Sentiment analysis on bangla text using extended lexicon dictionary and deep learning algorithms,” Array, vol. 13, p. 100123, 2022. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S259000562100059X 75 Bibliography 76 [7] E. Rønningstad, E. Velldal, and L. Øvrelid, “Entity-level sentiment analysis (ELSA): An exploratory task survey,” in Proceedings of the 29th International Conference on Computational Linguistics. Gyeongju, Republic of Korea: International Committee on Computational Linguistics, Oct. 2022, pp. 6773– 6783. [Online]. Available: https://aclanthology.org/2022.coling-1.589 [8] M. Kabir, O. Bin Mahfuz, S. R. Raiyan, H. Mahmud, and M. K. Hasan, “BanglaBook: A large-scale Bangla dataset for sentiment analysis from book reviews,” in Findings of the Association for Computational Linguistics: ACL 2023. Toronto, Canada: Association for Computational Linguistics, Jul. 2023, pp. 1237–1247. [Online]. Available: https://aclanthology.org/2023.findings-acl. 80 [9] F. Alshuwaier, A. Areshey, and J. Poon, “Applications and enhancement of document-based sentiment analysis in deep learning methods: Systematic literature review,” Intelligent Systems with Applications, vol. 15, p. 200090, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S2667305322000308 [10] M. Wankhade, A. C. S. Rao, and C. Kulkarni, “A survey on sentiment analysis methods, applications, and challenges,” p. 5731–5780, Feb. 2022. [Online]. Available: http://dx.doi.org/10.1007/s10462-022-10144-1 [11] B. Liu, Sentiment Analysis and Opinion Mining. Springer International Publish ing, 2012. [Online]. Available: http://dx.doi.org/10.1007/978-3-031-02145-9 [12] M. Karamibekr and A. A. Ghorbani, “Sentence subjectivity analysis in social do mains,” in 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelli gence (WI) and Intelligent Agent Technologies (IAT), vol. 1, 2013, pp. 268–275. [13] A. Al Hamoud, A. Hoenig, and K. Roy, “Sentence subjectivity analysis of a political and ideological debate dataset using lstm and bilstm with attention and gru models,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 10, Part A, pp. 7974–7987, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1319157822002415 [14] E. Savinova and F. Moscoso Del Prado, “Analyzing subjectivity using a transformer-based regressor trained on naïve speakers’ judgements,” in Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis, J. Barnes, O. De Clercq, and R. Klinger, Eds. Toronto, Canada: Association for Computational Linguistics, Jul. 2023, pp. 305–314. [Online]. Available: https://aclanthology.org/2023.wassa-1.27 Bibliography 77 [15] A. Das, S. Bandyopadhyay, and J. Univers, “Subjectivity detection in english and bengali: A crf-based approach,” 2009. [Online]. Available: https://api.semanticscholar.org/CorpusID:18335013 [16] M. Korayem, D. Crandall, and M. Abdul-Mageed, “Subjectivity and sentiment analysis of arabic: A survey,” p. 128–139, 2012. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-35326-0_14 [17] M. Abdul-Mageed, M. Diab, and M. Korayem, “Subjectivity and sentiment anal ysis of Modern Standard Arabic,” in Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, D. Lin, Y. Matsumoto, and R. Mihalcea, Eds. Portland, Oregon, USA: Association for Computational Linguistics, Jun. 2011, pp. 587–591. [Online]. Available: https://aclanthology.org/P11-2103 [18] A. AlKameli and M. Liakata, “Subjectivity analysis of arabic-english wikipedia,” 2021. [Online]. Available: http://dx.doi.org/10.1049/icp.2021.0857 [19] V. Jha, N. Manjunath, P. D. Shenoy, and K. R. Venugopal, “Hsas: Hindi subjectivity analysis system,” 2015 Annual IEEE India Conference (INDICON), pp. 1–6, 2015. [Online]. Available: https://api.semanticscholar.org/CorpusID: 22309810 [20] Z. Zhang, Q. Ye, R. Law, and Y. Li, “Automatic detection of subjective sentences based on chinese subjective patterns,” in Cutting-Edge Research Topics on Multi ple Criteria Decision Making, Y. Shi, S. Wang, Y. Peng, J. Li, and Y. Zeng, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 29–36. [21] H. Suzuki, Y. Miyauchi, K. Akiyama, T. Kajiwara, T. Ninomiya, N. Takemura, Y. Nakashima, and H. Nagahara, “A Japanese dataset for subjective and objective sentiment polarity classification in micro blog domain,” in Proceedings of the Thirteenth Language Resources and Evaluation Conference, N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, J. Odijk, and S. Piperidis, Eds. Marseille, France: European Language Resources Association, Jun. 2022, pp. 7022–7028. [Online]. Available: https://aclanthology.org/2022.lrec-1.759 [22] W. Li, “Subjectivity in japanese: A corpus-linguistic study,” p. 202, Aug. 2019. [Online]. Available: http://dx.doi.org/10.5539/ijel.v9n5p202 Bibliography 78 [23] M. M. R. Mamun, O. Sharif, and M. M. Hoque, “Classification of textual sentiment using ensemble technique,” Nov. 2021. [Online]. Available: http://dx.doi.org/10.1007/s42979-021-00922-z [24] Y. Xu, H. Cao, W. Du, and W. Wang, “A survey of cross-lingual sentiment analysis: Methodologies, models and evaluations,” p. 279–299, Jun. 2022. [Online]. Available: http://dx.doi.org/10.1007/s41019-022-00187-3 [25] A. Singh and K. Chatterjee, “A comparative approach for opinion spam detection using sentiment analysis,” in Proceedings of First International Conference on Computational Electronics for Wireless Communications, S. Rawat, A. Kumar, P. Kumar, and J. Anguera, Eds. Singapore: Springer Nature Singapore, 2022, pp. 511–522. [26] A. Rastogi and M. Mehrotra, “Opinion spam detection in online re views,” p. 1750036, Nov. 2017. [Online]. Available: http://dx.doi.org/10. 1142/S0219649217500368 [27] A. Mukherjee and V. Venkataraman, “Spam detection : An unsupervised approach using generative models,” 2014. [Online]. Available: https://api. semanticscholar.org/CorpusID:19034731 [28] A. Mewada and R. K. Dewang, “A comprehensive survey of various methods in opinion spam detection,” p. 13199–13239, Sep. 2022. [Online]. Available: http://dx.doi.org/10.1007/s11042-022-13702-5 [29] R. Amin, M. M. Rahman, and N. Hossain, “A bangla spam email detection and datasets creation approach based on machine learning algorithms,” Dec. 2019. [Online]. Available: http://dx.doi.org/10.1109/ICECTE48615.2019.9303525 [30] M. M. Uddin, M. Yasmin, M. S. H. Khan, M. I. Rahman, and T. Islam, “Detecting bengali spam sms using recurrent neural network,” p. 325–331, 2020. [Online]. Available: http://dx.doi.org/10.12720/jcm.15.4.325-331 [31] T. Islam, S. Latif, and N. Ahmed, “Using social networks to detect malicious bangla text content,” in 2019 1st International Conference on Advances in Sci ence, Engineering and Robotics Technology (ICASERT), 2019, pp. 1–4. [32] I. Tamhankar and A. Chaturvedi, “Classification of spam categorization on hindi documents using bayesian classifier,” p. 8–13, Jan. 2019. [Online]. Available: http://dx.doi.org/10.14445/22312803/IJCTT-V66P102 Bibliography 79 [33] S. Kumar and T. D. Singh, “Fake news detection on hindi news dataset,” Global Transitions Proceedings, vol. 3, no. 1, pp. 289–297, 2022, international Con ference on Intelligent Engineering Approach(ICIEA-2022). [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2666285X2200019X [34] R. M. Saeed, S. Rady, and T. F. Gharib, “An ensemble approach for spam de tection in arabic opinion texts,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 1, pp. 1407–1416, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1319157819307414 [35] A. M. Alkadri, A. Elkorany, and C. Ahmed, “Enhancing detection of arabic social spam using data augmentation and machine learning,” Applied Sciences, vol. 12, no. 22, 2022. [Online]. Available: https://www.mdpi.com/2076-3417/ 12/22/11388 [36] R. A. Potamias, G. Siolas, and A. G. Stafylopatis, “A transformer-based approach to irony and sarcasm detection,” p. 17309–17320, Jun. 2020. [Online]. Available: http://dx.doi.org/10.1007/s00521-020-05102-3 [37] R. Misra and P. Arora, “Sarcasm detection using news headlines dataset,” AI Open, vol. 4, pp. 13–18, 2023. [Online]. Available: https://www.sciencedirect. com/science/article/pii/S2666651023000013 [38] R. Anan, T. S. Apon, Z. T. Hossain, E. A. Modhu, S. Mondal, and M. G. R. Alam, “Interpretable bangla sarcasm detection using bert and explainable ai,” in 2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC), 2023, pp. 1272–1278. [39] A. Ghosh and K. Sarkar, “Irony detection in bengali tweets: A new dataset, exper imentation and results,” in Computational Intelligence in Data Science, A. Chan drabose, U. Furbach, A. Ghosh, and A. Kumar M., Eds. Cham: Springer Inter national Publishing, 2020, pp. 112–127. [40] S. K. Lora, G. M. Shahariar, T. Nazmin, N. N. Rahman, R. Rahman, M. Bhuiyan, and F. M. shah, “Ben-sarc: A corpus for sarcasm detection from bengali social media comments and its baseline evaluation,” Jan. 2022. [Online]. Available: http://dx.doi.org/10.31224/osf.io/7yb4c [41] A. Aggarwal, A. Wadhawan, A. Chaudhary, and K. Maurya, ““did you really mean what you said?” : Sarcasm detection in Hindi-English code-mixed data using bilingual word embeddings,” in Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020), W. Xu, A. Ritter, T. Baldwin, and Bibliography 80 A. Rahimi, Eds. Online: Association for Computational Linguistics, Nov. 2020, pp. 7–15. [Online]. Available: https://aclanthology.org/2020.wnut-1.2 [42] A. Rahma, S. S. Azab, and A. Mohammed, “A comprehensive survey on ara bic sarcasm detection: Approaches, challenges and future trends,” IEEE Access, vol. 11, pp. 18 261–18 280, 2023. [43] Y. Okimoto, K. Suwa, J. Zhang, and L. Li, “Sarcasm detection for japanese text using bert and emoji,” in Database and Expert Systems Applications: 32nd International Conference, DEXA 2021, Virtual Event, September 27–30, 2021, Proceedings, Part I. Berlin, Heidelberg: Springer-Verlag, 2021, p. 119–124. [Online]. Available: https://doi.org/10.1007/978-3-030-86472-9_11 [44] J. Cao, J. Li, M. Yin, and Y. Wang, “Online reviews sentiment analysis and product feature improvement with deep learning,” p. 1–17, Aug. 2023. [Online]. Available: http://dx.doi.org/10.1145/3522575 [45] X. Deng, P. Zhang, Y. Xu, W. Zhou, D. Luo, Y. Shi, Z. Huang, and R. Jie, “Object-dependent document-level sentiment analysis based on sentence fea tures,” in 2023 2nd International Joint Conference on Information and Commu nication Engineering (JCICE), 2023, pp. 172–178. [46] M. Rodríguez-Ibánez, A. Casánez-Ventura, F. Castejón-Mateos, and P.-M. Cuenca-Jiménez, “A review on sentiment analysis from social media platforms,” Expert Systems with Applications, vol. 223, p. 119862, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0957417423003639 [47] S. Hao, P. Zhang, S. Liu, and Y. Wang, “Sentiment recognition and analysis method of official document text based on bert–svm model,” Mar. 2023. [Online]. Available: http://dx.doi.org/10.1007/s00521-023-08226-4 [48] S. A. Purba, S. Tasnim, M. Jabin, T. Hossen, and M. K. Hasan, “Document level emotion detection from bangla text using machine learning techniques,” Feb. 2021. [Online]. Available: http://dx.doi.org/10.1109/ICICT4SD50815. 2021.9397036 [49] K. Islam, T. Yuvraz, M. S. Islam, and E. Hassan, “Emonoba: A dataset for an alyzing fine-grained emotions on noisy bangla texts,” in Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Lin guistics and the 12th International Joint Conference on Natural Language Pro cessing (Volume 2: Short Papers). Association for Computational Linguistics, 2022, pp. 128–134. Bibliography 81 [50] M. M. Rahman, R. Sadik, and A. A. Biswas, “Bangla document classification using character level deep learning,” Oct. 2020. [Online]. Available: http: //dx.doi.org/10.1109/ISMSIT50672.2020.9254416 [51] K. I. Islam, S. Kar, M. S. Islam, and M. R. Amin, “SentNoB: A dataset for analysing sentiment on noisy Bangla texts,” in Findings of the Association for Computational Linguistics: EMNLP 2021. Punta Cana, Dominican Republic: Association for Computational Linguistics, Nov. 2021, pp. 3265–3271. [Online]. Available: https://aclanthology.org/2021.findings-emnlp.278 [52] M. Rahman, M. Pramanik, R. Sadik, M. Roy, and P. Chakraborty, “Bangla docu ments classification using transformer based deep learning models,” Proceedings of the IEEE, pp. 1–6, 02 2021. [53] J. Su, Q. Chen, Y. Wang, L. Zhang, W. Pan, and Z. Li, “Sentence-level sentiment analysis based on supervised gradual machine learning,” Sep. 2023. [Online]. Available: http://dx.doi.org/10.1038/s41598-023-41485-8 [54] M. Bordoloi and S. K. Biswas, “Sentiment analysis: A survey on design framework, applications and future scopes,” p. 12505–12560, Mar. 2023. [Online]. Available: http://dx.doi.org/10.1007/s10462-023-10442-2 [55] V. Shirsat, R. Jagdale, K. Shende, S. N. Deshmukh, and S. Kawale, “Sentence level sentiment analysis from news articles and blogs using machine learning techniques,” p. 1–6, May 2019. [Online]. Available: http://dx.doi.org/10.26438/ijcse/v7i5.16 [56] J. Sun and M. Zhao, “Attention-based recursive autoencoder for sentence-level sentiment classification,” in 2023 International Conference on Pattern Recogni tion, Machine Vision and Intelligent Algorithms (PRMVIA), 2023, pp. 272–276. [57] T. Hossain, A. A. Nahian Kabir, M. Ahasun Habib Ratul, and A. Sattar, “Sen tence level sentiment classification using machine learning approach in the ben gali language,” in 2022 International Conference on Decision Aid Sciences and Applications (DASA), 2022, pp. 1286–1289. [58] M. Z. Haque, S. Zaman, J. R. Saurav, S. Haque, M. S. Islam, and M. R. Amin, “B-ner: A novel bangla named entity recognition dataset with largest entities and its baseline evaluation,” IEEE Access, vol. 11, pp. 45 194–45 205, 2023. [59] M. Hoang, O. A. Bihorac, and J. Rouces, “Aspect-based sentiment analysis using BERT,” in Proceedings of the 22nd Nordic Conference on Computational Bibliography 82 Linguistics. Turku, Finland: Linköping University Electronic Press, Sep.–Oct. 2019, pp. 187–196. [Online]. Available: https://aclanthology.org/W19-6120 [60] F. A. Naim, “Bangla aspect-based sentiment analysis based on corresponding term extraction,” in 2021 International Conference on Information and Commu nication Technology for Sustainable Development (ICICT4SD), 2021, pp. 65–69. [61] H. H. Do, P. Prasad, A. Maag, and A. Alsadoon, “Deep learning for aspect-based sentiment analysis: A comparative review,” Expert Systems with Applications, vol. 118, pp. 272–299, 2019. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0957417418306456 [62] W. Zhang, X. Li, Y. Deng, L. Bing, and W. Lam, “A survey on aspect-based sen timent analysis: Tasks, methods, and challenges,” IEEE Transactions on Knowl edge and Data Engineering, vol. 35, no. 11, pp. 11 019–11 038, 2023. [63] M. E. Mowlaei, M. Saniee Abadeh, and H. Keshavarz, “Aspect-based sentiment analysis using adaptive aspect-based lexicons,” Expert Systems with Applications, vol. 148, p. 113234, 2020. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0957417420300609 [64] N. Sultana, R. Sultana, R. I. Rasel, and M. M. Hoque, “Aspect-based sentiment analysis of bangla comments on entertainment domain,” in 2022 25th Interna tional Conference on Computer and Information Technology (ICCIT), 2022, pp. 953–958. [65] M. Ahmed Masum, S. Junayed Ahmed, A. Tasnim, and M. Saiful Islam, “Ban absa: An aspect-based sentiment analysis dataset for bengali and its baseline eval uation,” in Proceedings of International Joint Conference on Advances in Com putational Intelligence, M. S. Uddin and J. C. Bansal, Eds. Singapore: Springer Singapore, 2021, pp. 385–395. [66] M. M. Samia, A. Rajee, M. R. Hasan, M. O. Faruq, and P. C. Paul, “Aspect-based sentiment analysis for bengali text using bidirectional encoder representations from transformers (bert),” 2022. [Online]. Available: http: //dx.doi.org/10.14569/IJACSA.2022.01312112 [67] R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The impact of features extraction on the sentiment analysis,” Procedia Computer Science, vol. 152, pp. 341–348, 2019, international Conference on Pervasive Computing Advances and Applications- PerCAA 2019. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S1877050919306593 Bibliography 83 [68] O. Sen, M. Fuad, M. N. Islam, J. Rabbi, M. Masud, M. K. Hasan, M. A. Awal, A. Ahmed Fime, M. T. Hasan Fuad, D. Sikder, and M. A. Raihan Iftee, “Bangla natural language processing: A comprehensive analysis of classical, machine learning, and deep learning-based methods,” IEEE Access, vol. 10, pp. 38 999– 39 044, 2022. [69] S. Hira, M. R. Akhond, S. Chowdhury, A. K. Dipongkor, and S. M. Galib, “A systematic review of sentiment analysis from bengali text using nlp,” American Journal of Agricultural Science, Engineering, and Technology, vol. 6, no. 3, pp. 150–159, 2022. [70] S. Sazzed, “Bengsentilex and bengswearlex: creating lexicons for sentiment anal ysis and profanity detection in low-resource bengali language,” PeerJ Computer Science, vol. 7, p. e681, 2021. [71] H. Hota, D. K. Sharma, and N. Verma, “Lexicon-based sentiment analysis using twitter data,” p. 275–295, 2021. [Online]. Available: http://dx.doi.org/10.1016/ B978-0-12-824536-1.00015-0 [72] K. M. A. Hasan, M. Rahman, and Badiuzzaman, “Sentiment detection from bangla text using contextual valency analysis,” in 2014 17th International Con ference on Computer and Information Technology (ICCIT), 2014, pp. 292–295. [73] V. Bonta, N. Kumaresh, and N. Janardhan, “A comprehensive study on lexicon based approaches for sentiment analysis,” Asian Journal of Computer Science and Technology, vol. 8, no. S2, pp. 1–6, Mar 2019. [74] S. Sazzed, “Development of sentiment lexicon in bengali utilizing corpus and cross-lingual resources,” in 2020 IEEE 21st International Conference on Infor mation Reuse and Integration for Data Science (IRI). IEEE, Aug 2020. [75] S. Chowdhury and W. Chowdhury, “Performing sentiment analysis in bangla mi croblog posts,” in 2014 International Conference on Informatics, Electronics Vi sion (ICIEV), 2014, pp. 1–6. [76] M. Mahmudun, M. Tanzir, and S. Ismail, “Detecting sentiment from bangla text using machine learning technique and feature analysis,” International Journal of Computer Applications, vol. 153, no. 11, pp. 28–34, 2016. [77] R. C. Dey and O. Sarker, “Sentiment analysis on bengali text using lexicon based approach,” in 2019 22nd International Conference on Computer and Information Technology (ICCIT), 2019, pp. 1–5. Bibliography 84 [78] S. Akter and M. T. Aziz, “Sentiment analysis on facebook group using lexicon based approach,” in 2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), 2016, pp. 1–4. [79] F. Rahman and et al., “An annotated bangla sentiment analysis corpus,” in 2019 International Conference on Bangla Speech and Language Processing (ICBSLP), 2019, pp. 1–5. [80] H. Ali, M. F. Hossain, S. B. Shuvo, and A. A. Marouf, “Banglasenti: A dataset of bangla words for sentiment analysis,” in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2020, pp. 1–4. [81] F. Hossain, “Banglasenti: A dataset of bangla words for sentiment analysis,” https://github.com/fahad35/ BanglaSenti-A-Dataset-of-Bangla-Words-for-Sentiment-Analysis, Decem ber 2023, accessed: 2023-12-06. [82] M. A. Iqbal, A. Das, O. Sharif, M. M. Hoque, and I. H. Sarker, “Bemoc: A corpus for identifying emotion in bengali texts,” SN Computer Science, vol. 3, no. 2, 2022. [83] M. E. Khatun and T. Rabeya, “A machine learning approach for sentiment anal ysis of book reviews in bangla language,” in 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), 2022, pp. 1178–1182. [84] S. Sazzed, “Bengsentilex and bengswearlex: creating lexicons for sentiment analysis and profanity detection in low-resource bengali language,” p. e681, Nov. 2021. [Online]. Available: http://dx.doi.org/10.7717/peerj-cs.681 [85] K. I. Islam, S. Kar, M. S. Islam, and M. R. Amin, “Sentnob: A dataset for analysing sentiment on noisy bangla texts,” in Findings of the Association for Computational Linguistics: EMNLP 2021. Association for Computational Lin guistics, 2021. [86] A. Hassan, M. R. Amin, A. K. A. Azad, and N. Mohammed, “Sentiment analy sis on bangla and romanized bangla text using deep recurrent models,” in 2016 International Workshop on Computational Intelligence (IWCI), 2016, pp. 51–56. [87] S. A. Mahtab, N. Islam, and M. M. Rahaman, “Sentiment analysis on bangladesh cricket with support vector machine,” in 2018 International Conference on Bangla Speech and Language Processing (ICBSLP). IEEE, Sep. 2018. Bibliography 85 [88] R. A. Tuhin, B. K. Paul, F. Nawrine, M. Akter, and A. K. Das, “An automated sys tem of sentiment analysis from bangla text using supervised learning techniques,” in 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS), 2019, pp. 360–364. [89] M. T. Akter, M. Begum, and R. Mustafa, “Bengali sentiment analysis of e commerce product reviews using k-nearest neighbors,” in 2021 International Conference on Information and Communication Technology for Sustainable De velopment (ICICT4SD), 2021, pp. 40–44. [90] S. A. Kaiser, S. Mandal, A. K. Abid, E. Hossain, F. B. Ali, and I. T. Naheen, “Social media opinion mining based on bangla public post of facebook,” in 2021 24th International Conference on Computer and Information Technology (IC CIT), 2021, pp. 1–6. [91] M. R. H. K. Rahib, A. H. Tamim, M. Z. Tahmeed et al., “Emotion detection based on bangladeshi people’s social media response on covid-19,” SN COMPUT. SCI., vol. 3, p. 180, 2022. [92] N. Banik, S. Chakraborty, H. Seddiqui, M. A. Azim, and M. H. H. Rahman, “Sur vey on text-based sentiment analysis of bengali language,” 2019. [93] M. R. Karim, B. R. Chakravarthi, J. P. McCrae, and M. Cochez, “Classifica tion benchmarks for under-resourced bengali language based on multichannel convolutional-lstm network,” arXiv, 2020. [94] M. Hoq, P. Haque, and M. N. Uddin, “Sentiment analysis of bangla language us ing deep learning approaches,” in Communications in Computer and Information Science. Springer International Publishing, 2021, pp. 140–151. [95] M. K. Bashar, “A hybrid approach to explore public sentiments on covid-19,” Apr. 2022. [Online]. Available: http://dx.doi.org/10.1007/s42979-022-01112-1 [96] N. Tabassum and M. I. Khan, “Design an empirical framework for sentiment anal ysis from bangla text using machine learning,” in 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 2019, pp. 1– 5. [97] M. A. Hasan, J. Tajrin, S. A. Chowdhury, and F. Alam, “Sentiment classifica tion in bangla textual content: A comparative study,” in 2020 23rd International Conference on Computer and Information Technology (ICCIT), 2020, pp. 1–6. Bibliography 86 [98] J. Ding, H. Sun, X. Wang, and X. Liu, “Entity-level sentiment analysis of issue comments,” in 2018 IEEE/ACM 3rd International Workshop on Emotion Aware ness in Software Engineering (SEmotion), 2018, pp. 7–13. [99] M. Luo and X. Mu, “Entity sentiment analysis in the news: A case study based on negative sentiment smoothing model (nssm),” International Journal of Information Management Data Insights, vol. 2, no. 1, p. 100060, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S2667096822000040 [100] Z. Huang and Z. Fang, “An entity-level sentiment analysis of financial text based on pre-trained language model,” in 2020 IEEE 18th International Conference on Industrial Informatics (INDIN), vol. 1, 2020, pp. 391–396. [101] B. Jehangir, S. Radhakrishnan, and R. Agarwal, “A survey on named entity recognition — datasets, tools, and methodologies,” Natural Language Processing Journal, vol. 3, p. 100017, 2023. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S2949719123000146 [102] B. VeeraSekharReddy, K. S. Rao, and N. Koppula, “Named entity recognition using crf with active learning algorithm in english texts,” in 2022 6th Interna tional Conference on Electronics, Communication and Aerospace Technology, 2022, pp. 1041–1044. [103] M. S. Ullah Miah, J. Sulaiman, T. B. Sarwar, S. S. Islam, M. Rahman, and M. S. Haque, “Medical named entity recognition (medner): A deep learning model for recognizing medical entities (drug, disease) from scientific texts,” in IEEE EU ROCON 2023 - 20th International Conference on Smart Technologies, 2023, pp. 158–162. [104] A. Das, O. Sharif, M. M. Hoque, and I. H. Sarker, “Emotion classification in a resource constrained language using transformer-based approach,” in Proceed ings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop. Online: Association for Computational Linguistics, Jun. 2021, pp. 150–158. [Online]. Available: https://aclanthology.org/2021.naacl-srw.19 [105] P. G. Hoang, L. Thanh, and H.-L. Trieu, “VBD_NLP at SemEval-2023 task 2: Named entity recognition systems enhanced by BabelNet and Wikipedia,” in Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), A. K. Ojha, A. S. Doğruöz, G. Da San Martino, Bibliography 87 H. Tayyar Madabushi, R. Kumar, and E. Sartori, Eds. Toronto, Canada: Association for Computational Linguistics, Jul. 2023, pp. 1833–1843. [Online]. Available: https://aclanthology.org/2023.semeval-1.253 [106] M. Z. Haque, S. Zaman, J. R. Saurav, S. Haque, M. S. Islam, and M. R. Amin, “B-ner: A novel bangla named entity recognition dataset with largest entities and its baseline evaluation,” p. 45194–45205, 2023. [Online]. Available: http://dx.doi.org/10.1109/ACCESS.2023.3267746 [107] S. Mukherjee, M. Ghosh, Girish, and P. Basuchowdhuri, “MLlab4CS at SemEval-2023 task 2: Named entity recognition in low-resource language Bangla using multilingual language models,” in Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), A. K. Ojha, A. S. Doğruöz, G. Da San Martino, H. Tayyar Madabushi, R. Kumar, and E. Sartori, Eds. Toronto, Canada: Association for Computational Linguistics, Jul. 2023, pp. 1388–1394. [Online]. Available: https://aclanthology.org/2023.semeval-1.192 [108] K. I. Islam, M. S. Islam, and M. R. Amin, “Sentiment analysis in bengali via transfer learning using multi-lingual bert,” in 2020 23rd International Conference on Computer and Information Technology (ICCIT), 2020, pp. 1–5. [109] A. Bhattacharjee, T. Hasan, W. Ahmad, K. S. Mubasshir, M. S. Islam, A. Iqbal, M. S. Rahman, and R. Shahriyar, “BanglaBERT: Language model pretraining and benchmarks for low-resource language understanding evaluation in Bangla,” in Findings of the Association for Computational Linguistics: NAACL 2022, M. Carpuat, M.-C. de Marneffe, and I. V. Meza Ruiz, Eds. Seattle, United States: Association for Computational Linguistics, Jul. 2022, pp. 1318–1327. [Online]. Available: https://aclanthology.org/2022.findings-naacl.98 [110] N. J. Prottasha, A. A. Sami, M. Kowsher, S. A. Murad, A. K. Bairagi, M. Masud, and M. Baz, “Transfer learning for sentiment analysis using bert based supervised fine-tuning,” Sensors, vol. 22, no. 11, p. 4157, 2022. [111] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips. cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf [112] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in Proceedings Bibliography 88 of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds. Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp. 4171– 4186. [Online]. Available: https://aclanthology.org/N19-1423 [113] S. Sarker, “Banglabert: Bengali mask language model for bengali lan guage understanding,” 2020. [Online]. Available: https://github.com/sagorbrur/ bangla-bert [114] M. Tubishat, F. Al-Obeidat, and A. Shuhaiber, “Sentiment analysis of using chat gpt in education,” in 2023 International Conference on Smart Applications, Com munications and Networking (SmartNets), 2023, pp. 1–7. [115] K. Kheiri and H. Karimi, “Sentimentgpt: Exploiting gpt for advanced sentiment analysis and its departure from current machine learning,” 2023. [Online]. Available: https://arxiv.org/abs/2307.10234 [116] C. Dhivyaa, K. Nithya, G. Sendooran, R. Sudhakar, K. Kumar, and S. Kumar, “Xlnet transfer learning model for sentimental analysis,” in 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), 2023, pp. 76–84. [117] N. Azhar and S. Latif, “Roman urdu sentiment analysis using pre-trained distilbert and xlnet,” in 2022 Fifth International Conference of Women in Data Science at Prince Sultan University (WiDS PSU), 2022, pp. 75–78. [118] A. K. Singh and A. Verma, “An efficient method for aspect based sentiment analy sis using spacy and vader,” in 2021 10th IEEE International Conference on Com munication Systems and Network Technologies (CSNT), 2021, pp. 130–135. [119] S. M. Yimam, H. M. Alemayehu, A. Ayele, and C. Biemann, “Exploring Amharic sentiment analysis from social media texts: Building annotation tools and classification models,” in Proceedings of the 28th International Conference on Computational Linguistics, D. Scott, N. Bel, and C. Zong, Eds. Barcelona, Spain (Online): International Committee on Computational Linguistics, Dec. 2020, pp. 1048–1060. [Online]. Available: https://aclanthology.org/2020.coling-main.91 [120] M. L. McHugh, “Interrater reliability: the kappa statistic,” Biochem. Med. (Za greb), vol. 22, no. 3, pp. 276–282, 2012. [121] S. Sarker, “mbert bengali ner,” https://huggingface.co/sagorsarker/ mbert-bengali-ner, 2023. Bibliography 89 [122] M. Bilal and A. A. Almazroi, “Effectiveness of fine-tuned bert model in classification of helpful and unhelpful online customer reviews,” p. 2737–2757, Apr. 2022. [Online]. Available: http://dx.doi.org/10.1007/s10660-022-09560-w [123] A. S. Talaat, “Sentiment analysis classification system using hybrid bert models,” Jun. 2023. [Online]. Available: http://dx.doi.org/10.1186/s40537-023-00781-w [124] R. K. Kaliyar, A. Goswami, and P. Narang, “Fakebert: Fake news detection in social media with a bert-based deep learning approach,” p. 11765–11788, Jan. 2021. [Online]. Available: http://dx.doi.org/10.1007/s11042-020-10183-2 [125] A. Agrawal, S. Tripathi, M. Vardhan, V. Sihag, G. Choudhary, and N. Dragoni, “Bert-based transfer-learning approach for nested named-entity recognition using joint labeling,” Applied Sciences, vol. 12, no. 3, 2022. [Online]. Available: https://www.mdpi.com/2076-3417/12/3/976 [126] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Regularization,” in 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. [Online]. Available: https://openreview.net/forum?id=Bkg6RiCqY7 [127] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in 3rd International Conference on Learning Representations (ICLR), Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1412.6980 [128] Y. Sun, A. K. Wong, and M. S. Kamel, “Classification of Imbalanced Data: A Review,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 23, no. 04, pp. 687–719, 2009. [Online]. Available: https://www.worldscientific.com/doi/abs/10.1142/S0218001409007326 [129] J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya, “A survey on addressing high-class imbalance in big data,” Journal of Big Data, vol. 5, no. 1, pp. 1–30, 2018. [Online]. Available: https://link.springer.com/article/10.1186/ s40537-018-0151- |
en_US |