dc.identifier.citation |
1. R. Chowdhury, P. Arko, M. Ali, M. Iqbal Khan, S. Apon, F. Nowrin, A. Wasif, "Identification and Recognition of Rice Diseases and Pests Using Convolutional Neural Networks," Biosystems Engineering, vol. 194, pp. 112- 120, Jun 2. F. Jiang, Y. Lu, Y. Chen, D. Cai, and G. Li, "Image recognition of four rice leaf diseases based on deep learning and support vector machine," Com puters and Electronics in Agriculture, vol. 179, pp. 105824, 2020. 3. Sethy, P. K., Barpanda, N. K., Rath, A. K., Behera, S. K. (2020). Deep fea ture based rice leaf disease identification using support vector machine. Computers and Electronics in Agriculture, 175, 105527. 4. L. Y. W. Lwin and A. N. Htwe, "Image Classification for Rice Leaf Disease Using AlexNet Model," in 2023 IEEE Conference on Computer Applications (ICCA), Feb. 2023, pp. 124-129. 5. P. Rawat, A. Pandey, and A. Panaiyappan, "Rice Leaf Diseases Classifica tion Using Deep Learning Techniques," in 2023 International Conference on Networking and Communications (ICNWC), Chennai, India, 2023, pp. 1-8, doi: 10.1109/ICNWC57852.2023.10127315. 6. S. Ahmed et al., "Less is more: Lighter and faster deep neural architec ture for tomato leaf disease classification," IEEE Access, vol. 10, pp. 68868- 68884, 2022. 35 7. M. A. Azim et al., "An effective feature extraction method for rice leaf dis ease classification," Telkomnika (Telecommunication Computing Electron ics and Control), vol. 19, no. 2, pp. 463-470, 2021. 8. Coelli, T., Rahman, S., Thirtle, C. (2002). Technical, allocative, cost and scale efficiencies in Bangladesh rice cultivation: A non-parametric approach. Journal of Agricultural Economics, 53(3), 607e626. 9. Cruz, A. C., Luvisi, A., De Bellis, L., Ampatzidis, Y. (2017). X-fido: An effective application for detecting olive quick decline syndrome with deep learning and data fusion. Frontiers of Plant Science, 8, 1741. 10. DeChant, C., Wiesner-Hanks, T., Chen, S., Stewart, E. L., Yosinski, J., Gore, M. A., et al. (2017). Automated identification of northern leaf blight infected maize plants from field imagery using deep learning. Phytopathol ogy. 11. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con nected convolutional networks,” in Proc. IEEE Conf. Comput. Vis. Pat tern Recognit. (CVPR), Jul. 2017, pp. 2261–2269. [Online]. Available: https://ieeexplore.ieee.org/document/8099726 12. M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolu tional neural networks,” in Proc. 36th Int. Conf. Mach. Learn., in Pro ceedings of Machine Learning Research, vol. 97, K. Chaudhuri and R. Salakhutdinov, Eds., Jun. 2019, pp. 6105–6114. [Online]. Available: http: //proceedings.mlr.press/v97/tan19a.html 13. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9. [Online]. Available: https://ieeexplore.ieee.org/document/7298594/ 14. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convolutional neural networks for mobile vision applications,” 2017, arXiv:1704.04861. 15. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo bileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 4510–4520. [Online]. Available: https://ieeexplore.ieee.org/document/8578572 16. B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable 36 architectures for scalable image recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710. [Online]. Available: https://openaccess.thecvf.com/content_cvpr_2018/html/ Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html 17. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 770–778. [Online]. Available: https://ieeexplore.ieee. org/document/7780459 18. F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size,” 2016, arXiv:1602.07360. 19. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), Y. Bengio and Y. LeCun, Eds., 2015. 20. L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. Hershey, PA, USA: IGI Global, 2010, pp. 242–264. [Online]. Available: https://www.igi-global.com/chapter/transfer-learning/ 36988 21. D. P. Hughes and M. Salathé, “An open access repository of images on plant health to enable the development of mobile disease diagnostics,” 2015, arXiv:1511.08060. 22. S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” Frontiers Plant Sci., vol. 7, p. 1419, Sep. 2016. [Online]. Available: https://www.frontiersin.org/articles/ 10.3389/fpls.2016.01419/full 23. Z. Rehman, M. A. Khan, F. Ahmed, R. Damasevicius, S. R. Naqvi, M. W. Nisar, and K. Javed, “Recognizing apple leaf diseases using a novel par allel real-time processing framework based on MASK RCNN and transfer learning: An application for smart agriculture,” IET Image Process., vol. 24. H. Sabrol and K. Satish, “Tomato plant disease classification in digital im ages using classification tree,” in Proc. Int. Conf. Commun. Signal Pro cess. (ICCSP), Apr. 2016, pp. 1242–1246. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7754351 25. L. C. Ngugi, M. Abdelwahab, and M. Abo-Zahhad, “Tomato leaf segmenta 37 tion algorithms for mobile phone applications using deep learning,” Com put. Electron. Agricult., vol. 178, Nov. 2020, Art. no. 105788. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168169920306529 26. J. Liu and X. Wang, “Tomato diseases and pests detection based on im proved YOLO v3 convolutional neural network,” Frontiers Plant Sci., vol. 11, p. 898, Jun. 2020. [Online]. Available: https://www.frontiersin.org/article/10.3389/fpls.2020.00898 27. Y. Zhang, C. Song, and D. Zhang, “Deep learning-based object detection improvement for tomato disease,” IEEE Access, vol. 8, pp. 56607–56614, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/9044330 28. F. Alvaro, Y. Sook, K. Sang, and P. Dong, “A robust deep-learning-based de tector for real-time tomato plant diseases and pests recognition,” Sensors, vol. 17, no. 9, p. 2022, 2017. [Online]. Available: https://www.mdpi.com/1424- 8220/17/9/2022 29. J. Liu and X. Wang, “Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model,” Plant Methods, vol. 16, no. 1, pp. 1–16, Dec. 2020. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/32523613 30. M. Brahimi, K. Boukhalfa, and A. Moussaoui, “Deep learning for tomato diseases: Classification and symptoms visualization,” Appl. Artif. Intell., vol. 31, no. 4, pp. 299–315. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/08839514.2017.1315516 31. A. Fuentes, D. H. Im, S. Yoon, and D. S. Park, “Spectral analysis of CNN for tomato disease identification,” in Artificial Intelligence and Soft Com puting (Lecture Notes in Computer Science), vol. 10245, L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh, and J. M. Zurada, Eds. Cham, Switzerland: Springer, 2017, pp. 40–51. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-59063-94 |
en_US |