dc.identifier.citation |
[1] A. Akrim, “Student perception of cyberbullying in social media,” Aksaqila Jab fung, 2022. [2] T. T. Aurpa, R. Sadik, and M. S. Ahmed, “Abusive bangla comments detection on facebook using transformer-based deep learning models,” Social Network Analysis and Mining, vol. 12, no. 1, p. 24, 2022. [3] S. Batool, R. Yousaf, and F. Batool, “Bullying in social media: An effect study of cyber bullying on the youth,” Pakistan Journal of Criminology, vol. 9, no. 4, p. 119, 2017. [4] A. Bozyiğit, S. Utku, and E. Nasibov, “Cyberbullying detection: Utilizing social media features,” Expert Systems with Applications, vol. 179, p. 115 001, 2021. [5] E. Byrne, J. A. Vessey, and L. Pfeifer, “Cyberbullying and social media: Infor mation and interventions for school nurses working with victims, students, and families,” The Journal of School Nursing, vol. 34, no. 1, pp. 38–50, 2018. [6] M. A. Carter, “Protecting oneself from cyber bullying on social media sites– a study of undergraduate students,” Procedia-Social and Behavioral Sciences, vol. 93, pp. 1229–1235, 2013. [7] B. R. Chakravarthi, “Multilingual hope speech detection in english and dra vidian languages,” International Journal of Data Science and Analytics, vol. 14, no. 4, pp. 389–406, 2022. [8] D. Chatzakou, I. Leontiadis, J. Blackburn, et al., “Detecting cyberbullying and cyberaggression in social media,”ACM Transactions on theWeb (TWEB), vol. 13, no. 3, pp. 1–51, 2019. [9] R. R. Dalvi, S. B. Chavan, and A. Halbe, “Detecting a twitter cyberbullying using machine learning,” in 2020 4th International Conference on Intelligent Comput ing and Control Systems (ICICCS), IEEE, 2020, pp. 297–301. [10] M. I. H. Emon, K. N. Iqbal, M. H. K. Mehedi, M. J. A. Mahbub, and A. A. Rasel, “Detection of bangla hate comments and cyberbullying in social media using 24 nlp and transformer models,” in International Conference on Advances in Com puting and Data Sciences, Springer, 2022, pp. 86–96. [11] A. Görzig and L. A. Frumkin, “Cyberbullying experiences on-the-go: When so cial media can become distressing,” Cyberpsychology: Journal of Psychosocial Research on Cyberspace, vol. 7, no. 1, 2013. [12] F. Hassan, M. R. A. Kotwal, and M. N. Huda, “Bangla asr design by suppressing gender factor with gender-independent and gender-based hmm classifiers,” in 2011 World Congress on Information and Communication Technologies, 2011, pp. 1276–1281. doi: 10.1109/WICT.2011.6141432. [13] A. Ishmam and S. Sharmin, “Hateful speech detection in public facebook pages for the bengali language,” Dec. 2019, pp. 555–560. doi: 10.1109/ICMLA.2019. 00104. [14] H. Kelejian, “A spatial j-test for model specification against a single or a set of non-nested alternatives,”AStAWirtschafts- und Sozialstatistisches Archiv, vol. 1, pp. 3–11, Feb. 2008. doi: 10.1007/s12076-008-0001-9. [15] M. Kowsher, A. A. Sami, N. J. Prottasha, M. S. Arefin, P. K. Dhar, and T. Koshiba, “Bangla-bert: Transformer-based efficient model for transfer learning and lan guage understanding,” IEEE Access, vol. 10, pp. 91 855–91 870, 2022. doi: 10. 1109/ACCESS.2022.3197662. [16] H. Shahgir and K. Sayeed, Bangla grammatical error detection using t5 trans former model, Preprint available on arXiv, Mar. 2023. doi: 10.48550/arXiv. 2303.10612. arXiv: 2303.10612 [cs.CL]. [17] S. Singh, V. Thapar, and S. Bagga, “Exploring the hidden patterns of cyberbully ing on social media,” Procedia Computer Science, vol. 167, pp. 1636–1647, 2020. [18] M. Yao, C. Chelmis, and D.-S. Zois, “Cyberbullying ends here: Towards robust detection of cyberbullying in social media,” in The World Wide Web Conference, 2019, pp. 3427–3433. [19] M. T. Zaman, M. Zaman, F. Shah, and E. Ahmed, A deep learning-based bengali visual question answering system using contrastive loss, Available at Research Gate, Apr. 2024. doi: 10.13140/RG.2.2.32405 |
en_US |