| Login
dc.contributor.author | Hasan, Ragib | |
dc.contributor.author | Prantor, Rahat Mostofa | |
dc.date.accessioned | 2025-06-16T08:44:37Z | |
dc.date.available | 2025-06-16T08:44:37Z | |
dc.date.issued | 2024-11-30 | |
dc.identifier.citation | Adomat, H., & Grischek, T. (2020). Comparison of drying methods for the analysis of microplastics in sediment samples. Environmental Science & Technology, 54(14), 8893- 8902. https://doi.org/10.1021/acs.est.0c02347 Afrin, S., Uddin, M. K., & Rahman, M. M. (2020). Microplastics contamination in the soil from Urban Landfill site, Dhaka, Bangladesh. Heliyon, 6(11). https://doi.org/10.1016/j.heliyon.2020.e05572 Alamgir, P. D. M. (2005). Generation, composition and characteristics of municipal solid wastes in some major cities of Bangladesh. http://dspace.kuet.ac.bd/handle/20.500.12228/421 Alberghini, L., Truant, A., Santonicola, S., Colavita, G., & Giaccone, V. (2022). Microplastics in fish and Fishery products and Risks for Human Health: A review. International Journal of Environmental Research and Public Health/International Journal of Environmental Research and Public Health, 20(1), 789. https://doi.org/10.3390/ijerph20010789 Allen, S., Allen, D., Phoenix, V. R., Roux, G. L., Jiménez, P. D., Simonneau, A., Binet, S., & Galop, D. (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12(5), 339–344. https://doi.org/10.1038/s41561- 019-0335-5 Alimi, O. S., Claveau-Mallet, D., Kurusu, R. S., Lapointe, M., Bayen, S., & Tufenkji, N. (2022). Weathering pathways and protocols for environmentally relevant microplastics and nanoplastics: What are we missing? Journal of Hazardous Materials, 423, 126955. https://doi.org/10.1016/j.jhazmat.2021.126955 Al Nahian, S., Rakib, M. R. J., Haider, S. M. B., Kumar, R., Mohsen, M., Sharma, P., & Khandaker, M. U. (2022). Occurrence, spatial distribution, and risk assessment of microplastics in surface water and sediments of Saint Martin Island in the Bay of Bengal. Marine Pollution Bulletin, 179. https://doi.org/10.1016/j.marpolbul.2022.113720 Al Nahian, S., Rakib, M. R. J., Kumar, R., Haider, S. M. B., Sharma, P., & Idris, A. M. (2023). Distribution, characteristics, and risk assessments analysis of microplastics in shore sediments and surface water of Moheshkhali channel of Bay of Bengal, Bangladesh. Science of The Total Environment, 855, 158892. https://doi.org/10.1016/J.SCITOTENV.2022.158892 Bakir, A., Desender, M., Wilkinson, T., Van Hoytema, N., Amos, R., Airahui, S., Graham, J., & Maes, T. (2020). Occurrence and abundance of meso and microplastics in sediment, surface 55 waters, and marine biota from the South Pacific region. Marine Pollution Bulletin, 160, 111572. https://doi.org/10.1016/J.MARPOLBUL.2020.111572 Bläsing, M., & Amelung, W. (2018). Plastics in soil: Analytical methods and possible sources. Science of The Total Environment, 612, 422–435. https://doi.org/10.1016/J.SCITOTENV.2017.08.086 Carbery, M., O’Connor, W., & Palanisami, T. (2018). Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International, 115, 400–409. https://doi.org/10.1016/J.ENVINT.2018.03.007 Chae, Y., & An, Y. J. (2017). Effects of micro- and nanoplastics on aquatic ecosystems: Current research trends and perspectives. Marine Pollution Bulletin, 124(2), 624–632. https://doi.org/10.1016/J.MARPOLBUL.2017.01.070 Chia, R. W., Lee, J. Y., Cha, J., & Rodríguez-Seijo, A. (2024). Methods of soil sampling for microplastic analysis: a review. Environmental Chemistry Letters, 22(1), 227–238. https://doi.org/10.1007/S10311-023-01652-9/METRICS Crutchett, T. W., & Bornt, K. R. (2024). A simple overflow density separation method that recovers >95% of dense microplastics from sediment. MethodsX, 12, 102638. https://doi.org/10.1016/J.MEX.2024.102638 Derraik, J. G. B. (2002). The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin, 44(9), 842–852. https://doi.org/10.1016/S0025-326X(02)00220- 5 Fernández-González, V., Andrade-Garda, J. M., López-Mahía, P., & Muniategui-Lorenzo, S. (2021). Impact of weathering on the chemical identification of microplastics from usual packaging polymers in the marine environment. Analytica Chimica Acta, 1142, 179–188. https://doi.org/10.1016/J.ACA.2020.11.002 Fu, W., Min, J., Jiang, W., Li, Y., & Zhang, W. (2020). Separation, characterization and identification of microplastics and nanoplastics in the environment. Science of the Total Environment, 721. https://doi.org/10.1016/j.scitotenv.2020.137561 Ghorbaninejad Fard Shirazi, M. M., Shekoohiyan, S., Moussavi, G., & Heidari, M. (2023a). Microplastics and mesoplastics as emerging contaminants in Tehran landfill soils: The distribution and induced-ecological risk. Environmental Pollution, 324. https://doi.org/10.1016/j.envpol.2023.121368 Ghorbaninejad Fard Shirazi, M. M., Shekoohiyan, S., Moussavi, G., & Heidari, M. (2023b). Microplastics and mesoplastics as emerging contaminants in Tehran landfill soils: The distribution and induced-ecological risk. Environmental Pollution, 324, 121368. https://doi.org/10.1016/J.ENVPOL.2023.121368 56 Gimiliani, G. T., Fornari, M., Redígolo, M. M., Willian Vega Bustillos, J. O., Moledo de Souza Abessa, D., & Faustino Pires, M. A. (2020). Simple and cost-effective method for microplastic quantification in estuarine sediment: A case study of the Santos and São Vicente Estuarine System. Case Studies in Chemical and Environmental Engineering, 2. https://doi.org/10.1016/j.cscee.2020.100020 Guo, S., Wu, Z., Li, X., Shen, D., Shentu, J., Lu, L., Qi, S., Zhu, M., & Long, Y. (2024). Microplastic, a possible trigger of landfill sulfate reduction process. Science of the Total Environment, 906. https://doi.org/10.1016/j.scitotenv.2023.167662 Gurjar, U. R., Xavier, K. A. M., Shukla, S. P., Takar, S., Jaiswar, A. K., Deshmukhe, G., & Nayak, B. B. (2023). Seasonal distribution and abundance of microplastics in the coastal sediments of north eastern Arabian Sea. Marine Pollution Bulletin, 187, 114545. https://doi.org/10.1016/J.MARPOLBUL.2022.114545 Han, X., Lu, X., & Vogt, R. D. (2019). An optimized density-based approach for extracting microplastics from soil and sediment samples. Environmental Pollution, 254, 113009. https://doi.org/10.1016/J.ENVPOL.2019.113009 Haque, M. R., Ali, M. M., Ahmed, W., Siddique, M. A. B., Akbor, M. A., Islam, M. S., & Rahman, M. M. (2023). Assessment of microplastics pollution in aquatic species (fish, crab, and snail), water, and sediment from the Buriganga River, Bangladesh: An ecological risk appraisals. Science of The Total Environment, 857, 159344. https://doi.org/10.1016/J.SCITOTENV.2022.159344 He, P., Chen, L., Shao, L., Zhang, H., & Lü, F. (2019). Municipal solid waste (MSW) landfill: A source of microplastics? -Evidence of microplastics in landfill leachate. Water Research, 159, 38–45. https://doi.org/10.1016/J.WATRES.2019.04.060 Hidalgo-Ruz, V., Gutow, L., Thompson, R. C., & Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology, 46(6), 3060–3075. https://doi.org/10.1021/ES2031505/ASSET/IMAGES/MEDIUM/ES-2011- 031505_0006.GIF Hossain et al. (2022). 5 16 International Journal of SME Development Recycled Plastic Based Industries of Bangladesh: Current Scenario and Future Prospects. In International Journal of SME Development. http://ijsmed.smef.gov.bd/upload/issues/issues_05/articles/2_recycled_plastic_based_indust ries_of_bangladesh_current_scenario_and_future_prospects.pdf Hossain, M. B., Yu, J., Nur, A. A. U., Banik, P., Jolly, Y. N., Mamun, M. Al, Paray, B. A., & Arai, T. (2023). Distribution, characterization and contamination risk assessment of 57 microplastics in the sediment from the world’s top sediment-laden estuary. Journal of Environmental Management, 344. https://doi.org/10.1016/j.jenvman.2023.118472 Huang, J., Chen, H., Zheng, Y., Yang, Y., Zhang, Y., & Gao, B. (2021). Microplastic pollution in soils and groundwater: Characteristics, analytical methods and impacts. Chemical Engineering Journal, 425. https://doi.org/10.1016/j.cej.2021.131870 Huang, Z., Hu, B., & Wang, H. (2022). Analytical methods for microplastics in the environment: a review. Environmental Chemistry Letters 2022 21:1, 21(1), 383–401. https://doi.org/10.1007/S10311-022-01525-7 Hurley, R., Woodward, J., & Rothwell, J. J. (2018). Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nature Geoscience 2018 11:4, 11(4), 251–257. https://doi.org/10.1038/s41561-018-0080-1 Imhof, H. K., Schmid, J., Niessner, R., Ivleva, N. P., & Laforsch, C. (2012). A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnology and Oceanography: Methods, 10(7), 524–537. https://doi.org/10.4319/LOM.2012.10.524 Islam. (2014). 77 78 Prospects and Challenges of Plastic Industries in Bangladesh Prospects and Challenges of Plastic Industries in Bangladesh. In International Journal of SME Development. http://ijsmed.smef.gov.bd/upload/issues/issues_01/articles/4_Prospects_and_Challenges_of _Plastic_Industries_in_Bangladesh.pdf Islam, M. S., Islam, Z., & Hasan, M. R. (2022). Pervasiveness and characteristics of microplastics in surface water and sediment of the Buriganga River, Bangladesh. Chemosphere, 307, 135945. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135945 Islam, M. S., Karim, M. R., Islam, M. T., Oishi, H. T., Tasnim, Z., Das, H., Kabir, A. H. M. E., & Sekine, M. (2023). Abundance, characteristics, and ecological risks of microplastics in the riverbed sediments around Dhaka city. Science of The Total Environment, 877, 162866. https://doi.org/10.1016/J.SCITOTENV.2023.162866 Islam, T., Li, Y., Rob, M. M., & Cheng, H. (2022). Microplastic pollution in Bangladesh: Research and management needs. Environmental Pollution, 308, 119697. https://doi.org/10.1016/J.ENVPOL.2022.119697 JICA (2019). Clean Dhaka Master Plan: The Study on the Solid Waste Management in Dhaka City, Dhaka City Corporation, Final Report, Volume 2. https://openjicareport.jica.go.jp/pdf/11785243.pdf 58 K, M. B., Natesan, U., R, V., R, P. K., R, R., & S, S. (2021). Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater. Chemosphere, 277, 130263. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130263 Kabir, M. S., Wang, H., Luster-Teasley, S., Zhang, L., & Zhao, R. (2023a). Microplastics in landfill leachate: Sources, detection, occurrence, and removal. In Environmental Science and Ecotechnology (Vol. 16). Editorial Board, Research of Environmental Sciences. https://doi.org/10.1016/j.ese.2023.100256 Kabir, M. S., Wang, H., Luster-Teasley, S., Zhang, L., & Zhao, R. (2023b). Microplastics in landfill leachate: Sources, detection, occurrence, and removal. Environmental Science and Ecotechnology, 16, 100256. https://doi.org/10.1016/J.ESE.2023.100256 Karlsson, T. M., Kärrman, A., Rotander, A., & Hassellöv, M. (2020). Comparison between manta trawl and in situ pump filtration methods, and guidance for visual identification of microplastics in surface waters. Environmental Science and Pollution Research, 27(5), 5559–5571. https://doi.org/10.1007/s11356-019-07274-5 Kataoka, T., Nihei, Y., Kudou, K., & Hinata, H. (2019). Assessment of the sources and inflow processes of microplastics in the river environments of Japan. Environmental Pollution, 244, 958–965. https://doi.org/10.1016/J.ENVPOL.2018.10.111 Kawsar, M. A., Munny, F. J., Saif, U. M., Harun-Al-Rashid, A., Rahman, M. A., Barman, S. K., Adikari, D., Alam, M. T., Kunda, M., & Pandit, D. (2024). Unveiling the microplastic crisis: Insights into Bangladesh’s aquatic ecosystems - origins, impact, and solutions. Journal of Hazardous Materials Advances, 14, 100430. https://doi.org/10.1016/J.HAZADV.2024.100430 Koelmans, A. A., Besseling, E., Foekema, E., Kooi, M., Mintenig, S., Ossendorp, B. C., Redondo-Hasselerharm, P. E., Verschoor, A., Van Wezel, A. P., & Scheffer, M. (2017). Risks of Plastic Debris: Unravelling Fact, Opinion, Perception, and Belief. Environmental Science and Technology, 51(20), 11513–11519. https://doi.org/10.1021/ACS.EST.7B02219/ASSET/IMAGES/LARGE/ES-2017- 02219Z_0003.JPEG Li, J., Zhu, B., Huang, B., Ma, J., Lu, C., Chi, G., Guo, W., & Chen, X. (2023). Vertical distribution and characteristics of soil microplastics under different land use patterns: A case study of Shouguang City, China. Science of The Total Environment, 903, 166154. https://doi.org/10.1016/J.SCITOTENV.2023.166154 Liu, C., Cheng, L., Chen, C., & Sayed, N. (2018). Generation of Endothelial Cells from Human Induced Pluripotent Stem Cells. BIO-PROTOCOL, 8(22). https://doi.org/10.21769/bioprotoc.3086 59 López-Rosales, A., Andrade, J. M., Grueiro-Noche, G., Fernández-González, V., López-Mahía, P., & Muniategui-Lorenzo, S. (2021a). Development of a fast and efficient method to analyze microplastics in planktonic samples. Marine Pollution Bulletin, 168, 112379. https://doi.org/10.1016/J.MARPOLBUL.2021.112379 López-Rosales, A., Andrade, J. M., Grueiro-Noche, G., Fernández-González, V., López-Mahía, P., & Muniategui-Lorenzo, S. (2021b). Development of a fast and efficient method to analyze microplastics in planktonic samples. Marine Pollution Bulletin, 168. https://doi.org/10.1016/j.marpolbul.2021.112379 Lou, F., Wang, J., Sima, J., Lei, J., & Huang, Q. (2023). Mass concentration and distribution characteristics of microplastics in landfill mineralized refuse using efficient quantitative detection based on Py-GC/MS. Journal of Hazardous Materials, 459. https://doi.org/10.1016/j.jhazmat.2023.132098 Maes, T., Jessop, R., Wellner, N., Haupt, K., & Mayes, A. G. (2017). A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, 7. https://doi.org/10.1038/SREP44501 Maaß, S., Daphi, D., Lehmann, A., & Rillig, M. C. (2017). Transport of microplastics by two collembolan species. Environmental Pollution, 225, 456–459. https://doi.org/10.1016/j.envpol.2017.03.009 Mason, S. A., Garneau, D., Sutton, R., Chu, Y., Ehmann, K., Barnes, J., Fink, P., Papazissimos, D., & Rogers, D. L. (2016). Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environmental Pollution, 218, 1045–1054. https://doi.org/10.1016/J.ENVPOL.2016.08.056 Masura, J., Baker, J., Foster, G., & Arthur, C. (2015). Laboratory Methods for the analysis of microplastics in the Marine environment: Recommendations for quantifying synthetic particles in waters and sediments. In NOAA Marine Debris Division (pp. 1–29). https://doi.org/10.25607/OBP-604 Mattsson, K., Ekstrand, E., Granberg, M., Hassellöv, M., & Magnusson, K. (2022). Comparison of pre-treatment methods and heavy density liquids to optimize microplastic extraction from natural marine sediments. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022- 19623-5 Miloloža, M., Grgić, D. K., Bolanča, T., Ukić, Š., Cvetnić, M., Bulatović, V. O., Dionysiou, D. D., & Kušić, H. (2021). Ecotoxicological assessment of microplastics in freshwater sources—a review. In Water (Switzerland) (Vol. 13, Issue 1). MDPI AG. https://doi.org/10.3390/w13010056 Mintenig, S. M., Int-Veen, I., Löder, M. G. J., Primpke, S., & Gerdts, G. (2017). Identification of microplastic in effluents of waste water treatment plants using focal plane array-based 60 micro-Fourier-transform infrared imaging. Water Research, 108, 365–372. https://doi.org/10.1016/J.WATRES.2016.11.015 Möller, J. N., Heisel, I., Satzger, A., Vizsolyi, E. C., Oster, S. D. J., Agarwal, S., Laforsch, C., & Löder, M. G. J. (2022). Tackling the Challenge of Extracting Microplastics from Soils: A Protocol to Purify Soil Samples for Spectroscopic Analysis. Environmental Toxicology and Chemistry, 41(4), 844–857. https://doi.org/10.1002/ETC.5024 Mukotaka, A., Kataoka, T., & Nihei, Y. (2021). Rapid analytical method for characterization and quantification of microplastics in tap water using a Fourier-transform infrared microscope. Science of The Total Environment, 790, 148231. https://doi.org/10.1016/J.SCITOTENV.2021.148231 Nahian, S. A., Rakib, M. R. J., Haider, S. M. B., Kumar, R., Mohsen, M., Sharma, P., & Khandaker, M. U. (2022). Occurrence, spatial distribution, and risk assessment of microplastics in surface water and sediments of Saint Martin Island in the Bay of Bengal. Marine Pollution Bulletin, 179, 113720. https://doi.org/10.1016/j.marpolbul.2022.113720 Nahian, S. A., Rakib, M. R. J., Kumar, R., Haider, S. M. B., Sharma, P., & Idris, A. M. (2023). Distribution, characteristics, and risk assessments analysis of microplastics in shore sediments and surface water of Moheshkhali channel of Bay of Bengal, Bangladesh. The Science of the Total Environment, 855, 158892. https://doi.org/10.1016/j.scitotenv.2022.158892 Napper, I. E., & Thompson, R. C. (2016). Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Marine Pollution Bulletin, 112(1–2), 39–45. https://doi.org/10.1016/j.marpolbul.2016.09.025 Ngo, P. L., Pramanik, B. K., Shah, K., & Roychand, R. (2019). Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environmental Pollution, 255, 113326. https://doi.org/10.1016/j.envpol.2019.113326 Nuelle, M. T., Dekiff, J. H., Remy, D., & Fries, E. (2014). A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, 184, 161–169. https://doi.org/10.1016/J.ENVPOL.2013.07.027 Olatunji, M. A., Khandaker, M. U., Ladan, M., & Bradley, D. A. (2018). Polypyrrole-based nanocomposite adsorbents and its application in removal of radioactive materials. Polymer Based Nanocomposites for Energy and Environmental Applications: A Volume in Woodhead Publishing Series in Composites Science and Engineering, 469–485. https://doi.org/10.1016/B978-0-08-102262-7.00017-9 Padervand, M., Lichtfouse, E., Robert, D., & Wang, C. (2020). Removal of microplastics from the environment. A review. Environmental Chemistry Letters 2020 18:3, 18(3), 807–828. https://doi.org/10.1007/S10311-020-00983-1 61 Parvin, F., Hassan, Md. A., & Tareq, S. M. (2022). Risk assessment of microplastic pollution in urban lakes and peripheral Rivers of Dhaka, Bangladesh. Journal of Hazardous Materials Advances, 8, 100187. https://doi.org/10.1016/j.hazadv.2022.100187 Petrović, M., Mihajlović, I., Tubić, A., & Novaković, M. (2023). Microplastics in municipal solid waste landfills. Current Opinion in Environmental Science & Health, 31, 100428. https://doi.org/10.1016/j.coesh.2022.100428 Pfeiffer, F., & Fischer, E. K. (2020). Various Digestion Protocols Within Microplastic Sample Processing—Evaluating the Resistance of Different Synthetic Polymers and the Efficiency of Biogenic Organic Matter Destruction. Frontiers in Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.572424 Pfohl, P., Roth, C., & Wohlleben, W. (2024). The power of centrifugation: How to extract microplastics from soil with high recovery and matrix removal efficiency. MethodsX, 12, 102598. https://doi.org/10.1016/J.MEX.2024.102598 Pickett, J. E. (2018). Weathering of plastics. In Elsevier eBooks (pp. 163–184). https://doi.org/10.1016/b978-0-323-52472-8.00008-3 Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water. Science of The Total Environment, 643, 1644–1651. https://doi.org/10.1016/J.SCITOTENV.2018.08.102 Praagh, M. V., Hartman, C., & Brandmyr, E. (2019). Microplastics in Landfill Leachates in the Nordic Countries (2018:557). Nordic Council of Ministers. https://doi.org/10.6027/TN2018-557 Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150–159. https://doi.org/10.1016/J.TRAC.2018.10.029 Raghavendra, P., & Pullaiah, T. (2018). Biomedical Imaging Role in Cellular and Molecular Diagnostics. Advances in Cell and Molecular Diagnostics, 85–111. https://doi.org/10.1016/B978-0-12-813679-9.00004-X Rahman, M. A., Haque, M. M., & Tareq, S. M. (2024). Abundance and characteristics of microplastics in the landfill leachate of Amin Bazar, Dhaka: A potential risk to aquatic environments. Physics and Chemistry of the Earth, 134. https://doi.org/10.1016/j.pce.2024.103573 Rai, P. K., Lee, J., Brown, R. J. C., & Kim, K. H. (2021). Micro- and nano-plastic pollution: Behavior, microbial ecology, and remediation technologies. Journal of Cleaner Production, 291, 125240. https://doi.org/10.1016/J.JCLEPRO.2020.125240 62 Rani, M., Ducoli, S., Depero, L. E., Prica, M., Tubić, A., Ademovic, Z., Morrison, L., & Federici, S. (2023a). A Complete Guide to Extraction Methods of Microplastics from Complex Environmental Matrices. Molecules 2023, Vol. 28, Page 5710, 28(15), 5710. https://doi.org/10.3390/MOLECULES28155710 Rani, M., Ducoli, S., Depero, L. E., Prica, M., Tubić, A., Ademovic, Z., Morrison, L., & Federici, S. (2023b). A Complete Guide to Extraction Methods of Microplastics from Complex Environmental Matrices. In Molecules (Vol. 28, Issue 15). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/molecules28155710 Raupach, M., & Lu, H. (2004). Representation of land-surface processes in aeolian transport models. Environmental Modelling & Software, 19(2), 93–112. https://doi.org/10.1016/s1364-8152(03)00113-0 Rillig, M. C., & Lehmann, A. (2020). Microplastic in terrestrial ecosystems. Science, 368(6498), 1430–1431. https://doi.org/10.1126/science.abb5979 Revel, M., Châtel, A., & Mouneyrac, C. (2018). Micro(nano)plastics: A threat to human health? Current Opinion in Environmental Science & Health, 1, 17–23. https://doi.org/10.1016/j.coesh.2017.10.003 Roy, H., Alam, S. R., Bin-Masud, R., Prantika, T. R., Pervez, M. N., Islam, M. S., & Naddeo, V. (2022). A review on Characteristics, Techniques, and Waste-to-Energy aspects of Municipal solid Waste Management: Bangladesh Perspective. Sustainability, 14(16), 10265. https://doi.org/10.3390/su141610265 Rustagi, N., Pradhan, S., & Singh, R. (2011). Public health impact of plastics: An overview. In dian Journal of Occupational and Environmental Medicine, 15(3), 100. https://doi.org/10.4103/0019-5278.93198 Salikova, N. S., Rodrigo-Ilarri, J., Rodrigo-Clavero, M., Urazbayeva, S. E., Askarova, A. Z., & Magzhanov, K. M. (2023). Environmental assessment of microplastic pollution induced by solid waste landfills in the Akmola region (North Kazakhstan). Water, 15(16), 2889. https://doi.org/10.3390/w15162889 Scopetani, C., Cincinelli, A., Martellini, T., & Rodrigues, A. C. M. (2023). Editorial: Hazardous contaminants associated with plastics: occurrence and environmental effects. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1341738 Samandra, S., Johnston, J. M., Jaeger, J. E., Symons, B., Xie, S., Currell, M., Ellis, A. V., & Clarke, B. O. (2022a). Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Science of the Total Environment, 802. https://doi.org/10.1016/j.scitotenv.2021.149727 63 Samandra, S., Johnston, J. M., Jaeger, J. E., Symons, B., Xie, S., Currell, M., Ellis, A. V., & Clarke, B. O. (2022b). Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Science of the Total Environment, 802. https://doi.org/10.1016/j.scitotenv.2021.149727 Schrank, I., Möller, J. N., Imhof, H. K., Hauenstein, O., Zielke, F., Agarwal, S., Löder, M. G. J., Greiner, A., & Laforsch, C. (2022). Microplastic sample purification methods - Assessing detrimental effects of purification procedures on specific plastic types. Science of The Total Environment, 833, 154824. https://doi.org/10.1016/J.SCITOTENV.2022.154824 Sekar, V., & Sundaram, B. (2023a). Preliminary evidence of microplastics in landfill leachate, Hyderabad, India. Process Safety and Environmental Protection, 175, 369–376. https://doi.org/10.1016/J.PSEP.2023.05.070 Sekar, V., & Sundaram, B. (2023b). Preliminary evidence of microplastics in landfill leachate, Hyderabad, India. Process Safety and Environmental Protection, 175, 369–376. https://doi.org/10.1016/j.psep.2023.05.070 Sharma, P., Sharma, P., & Abhishek, K. (2024). Sampling, separation, and characterization methodology for quantification of microplastic from the environment. In Journal of Hazardous Materials Advances (Vol. 14). Elsevier B.V. https://doi.org/10.1016/j.hazadv.2024.100416 Shim, W. J., Hong, S. H., & Eo, S. (2018). Marine Microplastics: Abundance, distribution, and composition. In Elsevier eBooks (pp. 1–26). https://doi.org/10.1016/b978-0-12-813747- 5.00001-1 Shen, D., Zhou, H., Jin, Z., Yang, W., Ci, M., Long, Y., & Hu, L. (2023). Sulfate reduction behavior in pressure-bearing leachate saturated zone. Journal of Environmental Sciences, 126, 545–555. https://doi.org/10.1016/J.JES.2022.04.032 Shen, M., Xiong, W., Song, B., Zhou, C., Almatrafi, E., Zeng, G., & Zhang, Y. (2022). Microplastics in landfill and leachate: Occurrence, environmental behavior and removal strategies. Chemosphere, 305, 135325. https://doi.org/10.1016/j.chemosphere.2022.135325 Shirazi, M. M. G. F., Shekoohiyan, S., Moussavi, G., & Heidari, M. (2023). Microplastics and mesoplastics as emerging contaminants in Tehran landfill soils: The distribution and induced-ecological risk. Environmental Pollution, 324, 121368. https://doi.org/10.1016/j.envpol.2023.121368 Shu, X., Xu, L., Yang, M., Qin, Z., Zhang, Q., & Zhang, L. (2023). Spatial distribution characteristics and migration of microplastics in surface water, groundwater and sediment in karst areas: The case of Yulong River in Guilin, Southwest China. Science of the Total Environment, 868. https://doi.org/10.1016/j.scitotenv.2023.161578 64 Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. a. K. A. (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environmental Science and Pollution Research International, 29(39), 58514– 58536. https://doi.org/10.1007/s11356-022-21578-z Silva, A. B., Bastos, A. S., Justino, C. I. L., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. A. P. (2018). Microplastics in the environment: Challenges in analytical chemistry - A review. Analytica Chimica Acta, 1017, 1–19. https://doi.org/10.1016/J.ACA.2018.02.043 Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in Seafood and the Implications for Human Health. Current Environmental Health Reports, 5(3), 375–386. https://doi.org/10.1007/S40572-018-0206-Z/TABLES/4 Sobhani, Z., Lei, Y., Tang, Y., Wu, L., Zhang, X., Naidu, R., Megharaj, M., & Fang, C. (2020). Microplastics generated when opening plastic packaging. Scientific Reports 2020 10:1, 10(1), 1–7. https://doi.org/10.1038/s41598-020-61146-4 Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Jung, S. W., & Shim, W. J. (2017). Combined Effects of UV Exposure Duration and Mechanical Abrasion on Microplastic Fragmenta-tion by Polymer Type. Environmental Science & Technology, 51(8), 4368–4376. https://doi.org/10.1021/acs.est.6b06155 Stock, F., Kochleus, C., Bänsch-Baltruschat, B., Brennholt, N., & Reifferscheid, G. (2019). Sampling techniques and preparation methods for microplastic analyses in the aquatic environment – A review. TrAC Trends in Analytical Chemistry, 113, 84–92. https://doi.org/10.1016/J.TRAC.2019.01.014 Su, Y., Zhang, Z., Wu, D., Zhan, L., Shi, H., & Xie, B. (2019). Occurrence of microplastics in landfill systems and their fate with landfill age. Water Research, 164. https://doi.org/10.1016/j.watres.2019.114968 Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. M., & Ni, B. J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21– 37. https://doi.org/10.1016/J.WATRES.2018.12.050 Szymańska, M., & Obolewski, K. (2020). Microplastics as contaminants in freshwater environments: A multidisciplinary review. Ecohydrology & Hydrobiology, 20(3), 333–345. https://doi.org/10.1016/j.ecohyd.2020.05.001 Tan, A., Zhao, J., Zhao, Y., Li, X., & Su, H. (2023). Determination of microplastics by FTIR spectroscopy based on quaternion parallel feature fusion and support vector machine. Chemometrics and Intelligent Laboratory Systems, 243, 105018. https://doi.org/10.1016/J.CHEMOLAB.2023.105018 65 Tang, Y., Liu, Y., Chen, Y., Zhang, W., Zhao, J., He, S., Yang, C., Zhang, T., Tang, C., Zhang, C., & Yang, Z. (2021). A review: Research progress on microplastic pollutants in aquatic environments. Science of the Total Environment, 766, 142572. https://doi.org/10.1016/j.scitotenv.2020.142572 Tarhan, İ., & Kestek, H. M. (2024). Investigation of new analysis methods for simultaneous and rapid identification of five different microplastics using ATR-FTIR spectroscopy and chemometrics. Environmental Pollution, 362, 125043. https://doi.org/10.1016/J.ENVPOL.2024.125043 Tirkey, A., & Upadhyay, L. S. B. (2021). Microplastics: An overview on separation, identification and characterization of microplastics. Marine Pollution Bulletin, 170, 112604. https://doi.org/10.1016/j.marpolbul.2021.112604 Trihadiningrum, Y., Wilujeng, S. A., Tafaqury, R., Radita, D. R., & Radityaningrum, A. D. (2023). Evidence of microplastics in leachate of Randegan landfill, Mojokerto City, Indonesia, and its potential to pollute surface water. Science of the Total Environment, 874. https://doi.org/10.1016/j.scitotenv.2023.162207 Tuuri, E. M., Gascooke, J. R., & Leterme, S. C. (2024). Efficacy of chemical digestion methods to reveal undamaged microplastics from planktonic samples. Science of The Total Environment, 947, 174279. https://doi.org/10.1016/J.SCITOTENV.2024.174279 Upadhyay, K., & Bajpai, S. (2021). Microplastics in Landfills: A Comprehensive review on occurrence, characteristics and pathways to the aquatic environment. Nature Environment and Pollution Technology, 20(5). https://doi.org/10.46488/nept.2021.v20i05.009 Vairamuthu, M., Nidheesh, P. V., & Tangappan Sarasvathy, A. S. (2024). Microplastic pollution unveiled: the consequences of small unregulated dumping in villages, spanning from soil to water. Environmental Monitoring and Assessment 2024 196:12, 196(12), 1–15. https://doi.org/10.1007/S10661-024-13296-5 Van Praagh, M., Hartman, C., & Brandmyr, E. (2019). Microplastics in landfill leachates in the Nordic countries. In TemaNord. https://doi.org/10.6027/tn2018-557 Waldschläger, K., Lechthaler, S., Stauch, G., & Schüttrumpf, H. (2020). The way of micro plastic through the environment – Application of the source-pathway-receptor model (review). Science of The Total Environment, 713, 136584. https://doi.org/10.1016/j.scitotenv.2020.136584 66 Wan, Y., Chen, X., Liu, Q., Hu, H., Wu, C., & Xue, Q. (2022). Informal landfill contributes to the pollution of microplastics in the surrounding environment. Environmental Pollution, 293, 118586. https://doi.org/10.1016/J.ENVPOL.2021.118586 Wang, Z., Zhang, Y., Kang, S., Yang, L., Shi, H., Tripathee, L., & Gao, T. (2021). Research progresses of microplastic pollution in freshwater systems. Science of The Total Envi ronment, 795, 148888. https://doi.org/10.1016/j.scitotenv.2021.148888 Webb, H., Arnott, J., Crawford, R., & Ivanova, E. (2012). Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate). Polymers, 5(1), 1–18. https://doi.org/10.3390/polym5010001 Welden, N. A., & Lusher, A. (2020). Microplastics. In Elsevier eBooks (pp. 223–249). https://doi.org/10.1016/b978-0-12-817880-5.00009-8 Wojnowska-Baryła, I., Bernat, K., & Zaborowska, M. (2022). Plastic Waste Degradation in Landfill Conditions: The Problem with Microplastics, and Their Direct and Indirect Environmental Effects. International Journal of Environmental Research and Public Health, 19(20), 13223. https://doi.org/10.3390/ijerph192013223 Wong, J. K. H., Lee, K. K., Tang, K. H. D., & Yap, P. (2020). Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Science of the Total Environment, 719, 137512. https://doi.org/10.1016/j.scitotenv.2020.137512 Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C., & Jambeck, J. (2017). Plastic as a persistent marine pollutant. Annual Review of Environment and Resources, 42(1), 1–26. https://doi.org/10.1146/annurev-environ-102016-060700 Wu, M., Yang, C., Du, C., & Liu, H. (2020). Microplastics in waters and soils: Occurrence, analytical methods and ecotoxicological effects. In Ecotoxicology and Environmental Safety (Vol. 202). Academic Press. https://doi.org/10.1016/j.ecoenv.2020.110910 Yadav, V., Sherly, M., Ranjan, P., Tinoco, R. O., Boldrin, A., Damgaard, A., & Laurent, A. (2020). Framework for quantifying environmental losses of plastics from landfills. Resources Conservation and Recycling, 161, 104914. https://doi.org/10.1016/j.resconrec.2020.104914 Xie, J., Gowen, A., Xu, W., & Xu, J. (2024). Analysing micro- and nanoplastics with cutting edge infrared spectroscopy techniques: a critical review. In Analytical Methods (Vol. 16, Issue 15, pp. 2177–2197). Royal Society of Chemistry. https://doi.org/10.1039/d3ay01808c Yang, L., Zhang, Y., Kang, S., Wang, Z., & Wu, C. (2021). Microplastics in freshwater sediment: A review on methods, occurrence, and sources. Science of The Total Environment, 754, 141948. https://doi.org/10.1016/J.SCITOTENV.2020.141948 67 Yin, L., Wen, X., Huang, D., Du, C., Deng, R., Zhou, Z., Tao, J., Li, R., Zhou, W., Wang, Z., & Chen, H. (2021). Interactions between microplastics/nanoplastics and vascular plants. Environmental Pollution, 290, 117999. https://doi.org/10.1016/J.ENVPOL.2021.117999 Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus, 2(1). https://doi.org/10.1186/2193-1801-2-398 Zhang, J., Li, Z., Zhou, X., Ding, W., Wang, X., Zhao, M., Li, H., Zou, G., & Chen, Y. (2023). Long-term application of organic compost is the primary contributor to microplastic pollution of soils in a wheat–maize rotation. The Science of the Total Environment, 866, 161123. https://doi.org/10.1016/j.scitotenv.2022.161123 Zobkov, M. B., & Esiukova, E. E. (2018). Microplastics in a Marine Environment: Review of Methods for Sampling, Processing, and Analyzing Microplastics in Water, Bottom Sediments, and Coastal Deposits. Oceanology, 58(1), 137–143. https://doi.org/10.1134/S0001437017060169 | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/2424 | |
dc.description | Supervised by Prof. Dr. Md. Rezaul Karim, Department of Civil and Environmental Engineering(CEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh. This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Civil and Environmental Engineering, 2024 | en_US |
dc.description.abstract | Microplastics are small plastic particles typically less than 5 mm in size, which originate from the breakdown of larger plastic debris or from microbeads found in consumer products. In the context of landfill sites, microplastics are generated through the degradation of plastic waste due to physical, chemical, and biological processes. Open and controlled landfill sites serve as significant sources of microplastics, where improper waste handling and exposure to environmental elements can exacerbate the fragmentation of plastics. Over time, these particles can accumulate and persist in the environment, posing risks to both terrestrial and aquatic ecosystems. Bangladesh, a country with rapid urbanization and growing plastic consumption, faces significant challenges related to microplastic pollution. The country’s solid waste management infrastructure often struggles to keep pace with the increasing volume of waste, leading to the prevalence of open landfill sites where waste is not adequately contained. Microplastics (MPs) pollution has become an escalating problem in Bangladesh, however data of MPs pollution of landfill sites resources is very limited in Bangladesh. Microplastics in landfill sites in Bangladesh contaminate the local environment and pose long term risks to nearby water bodies, agricultural land, and air quality. Leachate from these landfills often flows into rivers and streams, accumulating microplastics in major waterways throughout the country. This contamination affects aquatic organisms and can enter the food chain, impacting human health. Furthermore, wind dispersion from uncovered landfill sites spreads microplastics into the surrounding soil and air, increasing the potential for human exposure through inhalation and ingestion. Once generated in landfill sites, microplastics can be transported to various ecosystems through leachate flow, wind dispersion, and surface water runoff. The movement of microplastics from landfills to nearby water bodies, soil, and air pathways contributes to their widespread distribution. This transport is influenced by factors such as rainfall, landfill design, proximity to water sources, and the permeability of containment systems. Consequently, microplastics can infiltrate food chains, impact wildlife, and pose potential health risks to humans. This study investigated microplastics pollution in two municipal solid waste (MSW) landfill sites, controlled and open of Dhaka city. In total, 31 samples of different sources were collected from the selected locations of Aminbazar and Kodda Landfill sites. A total of about 1 kg of soil of selected depth was sampled using hand auger, 1 liter of leachate and groundwater was collected from the landfill site, from the connecting river of the landfill site 1 kg of riverbed sediment, 5-10 11 m away from the shoreline was sampled using an Ekman grab sampler (15×15×15 cm) from top 10 cm of the riverbed at each sampling station and lastly, 1 liter of surface water was collected from the water columns Density separation and wet-peroxidation methods were employed to extract microplastic particles. Visual Identification was done using a microscope (OPTIKA v.1.0 2019) at 10 x 40 magnification to identify and quantify the microplastics. Microplastics (MPs) were detected across all sampling locations, with abundances ranging from 15 to 4056 particles per kilogram (kg) or liter (L), depending on the sample type. A total of 18,158 particles were recorded from 31 sampling locations across two landfill sites. The Kodda open landfill site accounted for 7,411 particles across 15 sampling locations, while the Aminbazar controlled landfill site contributed 10,747 particles from 16 locations. At the Aminbazar site, the mean and median MP abundances for soil, leachate, river surface water, riverbed sediment, and groundwater were 900.4 ± 227.9 n/kg and 887 n/kg, 245 ± 85.2 n/kg and 213 n/kg, 188.3 ± 38.2 n/kg and 189 n/kg, 280.2 ± 107.8 n/kg and 341 n/kg, and 48 n/kg for both metrics, respectively. In Kodda, these values were 514.7 ± 115.8 n/kg and 544 n/kg, 362.1 ± 225.8 n/kg and 362.5 n/kg, 360.7 ± 96.6 n/kg and 345 n/kg, 405.3 ± 264.8 n/kg and 457 n/kg, and 514.7 ± 115.8 n/kg and 544 n/kg, respectively. The highest MP abundance was observed in the surface layers of landfill soil due to extensive dumping activities in both older and newer areas, while the lowest was in leachate from the Aminbazar landfill’s treatment facility. At the Aminbazar site, the older landfill soil showed the highest MP concentrations, likely due to prolonged, unmanaged plastic waste accumulation. A decreasing trend in MP abundance with soil depth was noted in both old and new landfill sections, likely attributed to initial deposition at the surface and subsequent weathering and degradation over time. The analysis reveals significant microplastic (MP) pollution across both landfill sites, with higher overall abundance at the controlled Aminbazar landfill compared to the open Kodda landfill. The highest MP concentrations were observed in surface soils, particularly in older landfill sections, highlighting the long-term impact of unmanaged plastic waste disposal. A consistent pattern of decreasing MP abundance with depth was identified, likely due to surface deposition followed by weathering and vertical migration over time. The lowest MP levels were recorded in the leachate of the Aminbazar treatment facility, underscoring the potential effectiveness of controlled landfill management practices in reducing environmental contamination. These findings emphasize the need for improved waste management strategies to mitigate MP pollution and its associated ecological risks. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Civil and Environmental Engineering(CEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.subject | Microplastics, Abundance, Landfill Sites, Occurance, Ecological Risk | en_US |
dc.title | Assessment of Microplastics Pollution from Municipal Solid Waste Landfill Sites: A Comparative Study of Controlled and Open Landfills in Bangladesh | en_US |
dc.type | Thesis | en_US |