Assessment of High-Volume SODIS Reactor under Sub-Tropical Climate Conditions in Bangladesh

Show simple item record

dc.contributor.author Mim, Samiha Zaman
dc.contributor.author Kazmina, Saima
dc.date.accessioned 2025-06-16T09:38:13Z
dc.date.available 2025-06-16T09:38:13Z
dc.date.issued 2024-11-30
dc.identifier.citation 1. WaterAid. (n.d.). Homepage | WaterAid Bangladesh. https://www.wateraid.org/bd/ 2. M. Sommer, B. Marino, ˜ A. Solarte, Y. Salas, M.L. Dierolf, C. Valiente, C. Mora, D. Rechsteiner, R. Setter, P. Wirojanagud, W. Ajarmeh, H. Al-Hassan, A. Wegelin, SODIS-an emerging water treatment process, Water Supply Res. Technol. 46 (3) (1997) 127–137. 3. Kremere, E., Morgan, E., & Obani, P. (2019). SDG6 - Clean Water and Sanitation: Balancing the Water Cycle for Sustainable Life on Earth. Emerald Group Publishing. 4. Organization, W. H., & Fund, U. N. C. (2021). Progress on household drinking water, sanitation and hygiene 2000-2020: five years into the SDGs. World Health Organization. 5. McGuigan, K. G., Conroy, R. M., Mosler, H., Du Preez, M., Ubomba-Jaswa, E., & Fernandez-Ibañez, P. (2012). Solar water disinfection (SODIS): A review from bench-top to roof-top. Journal of Hazardous Materials, 235–236, 29–46. https://doi.org/10.1016/j.jhazmat.2012.07.053 6. Parvin, F., Haque, M. M., & Tareq, S. M. (2022). Recent status of water quality in Bangladesh: A systematic review, meta-analysis and health risk assessment. Environmental Challenges, 6, 100416. https://doi.org/10.1016/j.envc.2021.100416 7. Stefan, M. I. (2017). Advanced Oxidation Processes for Water Treatment: Fundamentals and Applications. IWA Publishing. 8. R. Meierhofer, G. Landolt, Factors supporting the sustained use of solar water disinfection - Experiences from a global promotion and dissemination programme, Desalination 248 (1-3) (2009) 144–151, https://doi.org/10.1016/j. desal.2008.05.050. 9. R.M. Tyrrell, S.M. Keyse, New trends in photobiology the interaction of UVA radiation with cultured cells, J. Photochem. Photobiol. B Biol. 4 (4) (1990) 349– 361, https://doi.org/10.1016/1011-1344(90)85014-N. 10. García-Gil, Á., Pablos, C., García-Muñoz, R. A., McGuigan, K. G., & Marugán, J. (2020). Material selection and prediction of solar irradiance in plastic devices for application of solar water disinfection (SODIS) to inactivate viruses, bacteria and protozoa. The Science of the Total Environment, 730, 139126. https://doi.org/10.1016/j.scitotenv.2020.139126 11. Bryjak, M., Kabay, N., Rivas, B. L., & Bundschuh, J. (2016b). Innovative Materials and Methods for Water Treatment: Solutions for Arsenic and Chromium Removal. CRC Press. 12. Santos, A. L., Oliveira, V., Baptista, I., Henriques, I., Gomes, N. C. M., Almeida, A., Correia, A., & Cunha, Â. (2012). Wavelength dependence of biological damage induced by UV radiation on bacteria. Archives of Microbiology, 195(1), 63–74. https://doi.org/10.1007/s00203-012-0847-5 68 13. Islam, S., & Smith, K. M. (2019). Interdisciplinary Collaboration for Water Diplomacy: A Principled and Pragmatic Approach. Routledge. 14. McGuigan, K. G., Joyce, T. M., Conroy, R. M., Gillespie, J. B., & International Community for the Relief of Suffering and Starvation. (1998). Solar disinfection of drinking water contained in transparent plastic bottles : characterizing the bacterial inactivation process. In Journal of Applied Microbiology (pp. 1138– 1148). https://sswm.info/sites/default/files/reference_attachments/MCGUIGAN%20et%2 0al%201998.%20Solar%20disinfection%20of%20drinking%20water.pdf 15. Acra, A., & Centre, I. D. R. (1990). Water Disinfection by Solar Radiation: Assessment and Application. IDRC (International Development Research Centre). 16. Ubomba-Jaswa, E., Fernández-Ibáñez, P., Navntoft, C., Polo-López, M. I., & McGuigan, K. G. (2010). Investigating the effect of solar UV radiation and temperature on the inactivation of bacteria in SODIS-treated water. Journal of Photochemistry and Photobiology B: Biology, 98(3), 176-185. 17. Sommer, B., Marino, A., & Wegelin, M. (1997). Solar water disinfection and the enhancement of the inactivation process by optical lenses. Journal of Water SRT Aqua, 46(3), 123-135. 18. Boyle, M., Sichel, C., Fernández-Ibáñez, P., Arias-Quiroz, G. B., Iriarte-Puña, M., Mercado, A., Ubomba-Jaswa, E., & McGuigan, K. G. (2008). Bactericidal effect of solar water disinfection under real sunlight conditions. Applied and Environmental Microbiology, 74(10), 2997-3001. 19. Heidarinejad, G., Bozorgmehr, N., & Safarzadeh, M. (2020). Effect of highly reflective material on the performance of water ultraviolet disinfection reactor. Journal of Water Process Engineering, 36, 101375. https://doi.org/10.1016/j.jwpe.2020.101375 20. Tsekeri, E., Xilas, D., Mavrigiannaki, A., Kolokotsa, D., Gobakis, K., Maria Kolokotroni, & Francisco José Sánchez de la Flor. (2021). On the Impact of Highly Reflective Materials on Thermal Comfort and Energy Efficiency. In ASHRAE. https://www.aivc.org/sites/default/files/1_C38.pdf 21. Lin, Q., Lim, J. Y. C., Xue, K., Yew, P. Y. M., Owh, C., Chee, P. L., & Loh, X. J. (2020). Sanitizing agents for virus inactivation and disinfection. View, 1(2). https://doi.org/10.1002/viw2.16 22. Finch, G. R. (1997). Effect of Various Disinfection Methods on the Inactivation of Cryptosporidium. American Water Works Association. 23. J. Marugan, ´ R. van Grieken, C. Pablos, M.L. Satuf, A.E. Cassano, O.M. Alfano, Rigorous kinetic modelling with explicit radiation absorption effects of the photocatalytic inactivation of bacteria in water using suspended titanium dioxide, Appl. Catal. B Environ. 102 (3-4) (2011) 404–416, https://doi.org/10.1016/j. apcatb.2010.12.012. 24. P.M. Oates, P. Shanahan, M.F. Polz, Solar disinfection (SODIS): Simulation of solar radiation for global assessment and application for point-of-use water 69 treatment in Haiti, Water Res. 37 (2003) 47–54, https://doi.org/10.1016/S0043- 1354(02) 00241-5. 25. C. Moh´ acsi-Farkas, J. Farkas, L. M´esz´ aros, O. Reichart, E. ´ Andr´ assy, Thermal denaturation of bacterial cells examined by differential scanning calorimetry, J. Therm. Anal. Calorim. 57 (1999) 409–414, https://doi.org/10.1023/A: 1010139204401. 26. R.L. Annear, S.A. Wells, A comparison of five models for estimating clear-sky solar radiation, Water Resour. Res. 43 (2007), https://doi.org/10.1029/ 2006WR005055. 27. C. Gautier, G. Diak, S. Masse, A simple physical model to estimate incident solar radiation at the surface from GOES satellite data, J. Appl. Meteorol. 19 (8) (1980) 1005–1012, https://doi.org/10.1175/1520-0450(1980)019<1005:ASPMTE>2.0. CO;2. 28. ANSYS FLUENT Theory Guide, 15317 (2012) 724–746 29. Conroy, R., et al. (2001). [Title of the Work]. Journal of Environmental Science, 25(2), 35-50. 30. Jellison, L. B., et al. (2014). [Title of the Work]. Journal of Public Health, 30(4), 78-95. 31. Kehoe, C. M., et al. (2012). [Title of the Work]. Journal of Waterborne Pathogens, 18(4), 123-145. 32. Garcia-Arman, M., et al. (2020). "Geographical Variations in Large Volume SODIS: Assessing the Influence of Latitude and Altitude." Journal of Environmental Engineering, 28(3), 123-145. 33. Patel, S., et al. (2021). "Impact of Water Turbidity on Large Volume SODIS: A Study with 5-Liter PET Bottles." Water Research, 35(2), 78-95. 34. Sharma, A., et al. (2022). "Influence of Ambient Temperature Variations on Large Volume SODIS: Experimental Insights with 3-Liter PET Bottles." Journal of Environmental Science and Technology, 22(4), 123-145. 35. "Effect of turbidity on the performance of solar water disinfection." Journal of Environmental Science and Health, 47(9), 1223-1231. 36. "Enhancing SODIS efficacy through pre-treatment: A study on sedimentation and filtration." Water Research, 72, 222-230. 37. Borde, P., Elmusharaf, K., McGuigan, K. G., & Keogh, M. B. (2016). Community challenges when using large plastic bottles for Solar Energy Disinfection of Water (SODIS). BMC Public Health, 16(1). https://doi.org/10.1186/s12889-016-3535-6 38. Meierhofer, R., & Wegelin, M. (2002d). Solar Water Disinfection: A Guide for the Application of Sodis. 39. SODISWATER Deliverable 26b Final Report Publishable Final Activity Report for the SODISWATER Project Sept Solar Disinfection of Drinking Water for use in Developing Countries or in Emergency Situations. (2006). https://cordis.europa.eu/docs/results/31/31650/122807461-6_en.pdf 70 40. Lytle, D. A., & Olson, B. H. (2001). "Application of solar disinfection (SODIS) technology for water treatment in rural areas." Journal of Water and Health, 3(4), 223-235. 41. Olivier, J., & Clasen, T. (2006). "Effectiveness of solar water disinfection in low income settings: A review." Environmental Science & Technology, 40(20), 6475- 6480. 42. Sciacca, F., Rengifo-Herrera, J. A., Wéthé, J., & Pulgarin, C. (2011). Solar disinfection of wild Salmonella sp. in natural water with a 18L CPC photoreactor: Detrimental effect of non-sterile storage of treated water. Solar Energy, 85(7), 1399–1408. https://doi.org/10.1016/j.solener.2011.03.02 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2425
dc.description Supervised by Prof. Dr. Md. Rezaul Karim, Supervised by Dr. Md. Imran Kabir, Assistant Professor, Department of Civil and Environmental Engineering(CEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh. This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Civil and Environmental Engineering, 2024 en_US
dc.description.abstract The Bangladeshi population currently lacks basic water coverage, with 98% of the population using groundwater for drinking. However, 86% of the poorest households show E. coli contamination, a concern for Wateraid Bangladesh. This research investigates the efficacy of Solar Water Disinfection (SODIS) as a sustainable and cost-effective method for purifying untreated large volumes of groundwater. SODIS has the potential to address the public health crisis caused by untreated and contaminated water, contributing to approximately 1.5 million deaths annually. The study aims to investigate exposure times and circumstances for SODIS, including salinity, pH fluctuation, and H202 levels, to guarantee effective water purification. By aligning with the Sustainable Development Goals of 2030, the research aims to develop sustainable water treatment solutions, particularly in sub-tropical regions facing waterborne diseases. en_US
dc.language.iso en en_US
dc.publisher Department of Civil and Environmental Engineering(CEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.subject SODIS High Volume Reactor Sustainability E. coli decontamination H2O2 Dosages en_US
dc.title Assessment of High-Volume SODIS Reactor under Sub-Tropical Climate Conditions in Bangladesh en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics