| Login
dc.contributor.author | Hasan, Muhammad Mahmood | |
dc.date.accessioned | 2025-06-19T06:20:16Z | |
dc.date.available | 2025-06-19T06:20:16Z | |
dc.date.issued | 2024-10-30 | |
dc.identifier.citation | [1] V. M. Fthenakis, H. C. Kim, and A. E. Alsema, “Emissions from Photovoltaic Life Cycles,” Environ. Sci. Technol., vol. 42, no. 6, pp. 2168–2174, 2008. [2] B. K. Sovacool, “The intermittency of wind, solar, and renewable electricity generators: Technical barrier or rhetorical excuse?,” Util. Policy, vol. 17, no. 3–4, 2009, doi: 10.1016/j.jup.2008.07.001. [3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (Version 45),” Prog. Photovoltaics Res. Appl., vol. 23, no. 1, 2015, doi: 10.1002/pip.2573. [4] H. L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renew. Sustain. Energy Rev., vol. 22, pp. 466–481, 2013, doi: 10.1016/j.rser.2013.01.032. [5] M. A. H. Shah, H. Butt, M. Farooq, M. N. Ihsan, M. Sajid, and E. Uddin, “Development of a truncated ellipsoidal reflector-based metal halide lamp solar simulator for characterization of photovoltaic cells,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 43, no. 20, 2021, doi: 10.1080/15567036.2020.1842557. [6] J. D. Haigh, “The Sun and the Earth’s Climate Living Reviews in Solar Physics,” Living Rev. Sol. Phys, vol. 4, no. 2, 2007. [7] J. A. Eddy, R. L. Gilliland, and D. V. Hoyt, “Changes in the solar constant and climatic effects,” Nature, vol. 300, no. 5894. 1982, doi: 10.1038/300689a0. [8] A. Alzahrani, P. Shamsi, C. Dagli, and M. Ferdowsi, “Solar Irradiance Forecasting Using Deep Neural Networks,” Procedia Comput. Sci., vol. 114, pp. 304–313, 2017, doi: 10.1016/j.procs.2017.09.045. BIBLIOGRAPHY 219 [9] X. Chen, X. Huang, Y. Cai, H. Shen, and J. Lu, “Intra-day forecast of ground horizontal irradiance using long short-term memory network (LSTM),” J. Meteorol. Soc. Japan, vol. 98, no. 5, 2020, doi: 10.2151/jmsj.2020-048. [10] K. Y. Bae, H. S. Jang, and D. K. Sung, “Hourly Solar Irradiance Prediction Based on Support Vector Machine and Its Error Analysis,” IEEE Trans. Power Syst., vol. 32, no. 2, 2017, doi: 10.1109/TPWRS.2016.2569608. [11] B. P. Mukhoty, V. Maurya, and S. K. Shukla, “Sequence to sequence deep learning models for solar irradiation forecasting,” in 2019 IEEE Milan PowerTech, PowerTech 2019, 2019, doi: 10.1109/PTC.2019.8810645. [12] E. M. R. Hydrocarbon Unit, Energy and Mineral Resources Division, Ministry of Power, “Energy Scenario of Bangladesh 2021-22,” 2023. [Online]. Available: www.hcu.org.bd. [13] Bangladesh Power Development Board, “Annual Report 2022-23,” 2023. [14] Bangladesh Power Development Board, “BPDB Daily Generation Report of 09/06/2024.” http://119.40.95.168/bpdb/daily_generation_report (accessed Jun. 09, 2024). [15] M. T. F. Himel, S. Khatun, M. Rahman, and A. T. Nahian, “A Prospective Assessment of Biomass Energy Resources: Potential, Technologies and Challenges in Bangladesh,” J. Energy Res. Rev., no. June, pp. 1–25, 2019, doi: 10.9734/jenrr/2019/v3i430108. [16] International Atomic Energy Agency, “Power Reactor Information System, Country Statistics: Bangladesh.” https://pris.iaea.org/PRIS/CountryStatistics/CountryDetails.aspx?current=BD (accessed Oct. 10, 2024). [17] E. and M. R. Hydrocarbon Unit, Energy and Mineral Resources Division, Ministry of Power, “Energy Scenario of Bangladesh 2022-23.” [Online]. Available: https://hcu.portal.gov.bd/sites/default/files/files/hcu.portal.gov.bd/publications/ae775b BIBLIOGRAPHY 220 7e_b63d_491d_81e4_b317ff8e11ca/2024-07-15-09-11- d13a3451b969fb9a3c5c74e9130c9f6c.pdf. [18] W. N. Association, “World Nuclear Performance Report 2024,” 2024. [Online]. Available: http://world-nuclear.org/getmedia/b9d08b97-53f9-4450-92ff 945ced6d5471/world-nuclear-performance-report-2016.pdf.aspx. [19] R. Islam, A. B. M. N. Bhuiyan, and M. W. Ullah, “An overview of Concentrated Solar Power (CSP) technologies and its opportunities in Bangladesh,” in International Conference on Electrical. Computer and Communication Engineering (ECCE), 2017, pp. 844–849. [20] J. H. Peterseim, S. White, A. Tadros, and U. Hellwig, “Concentrating solar power hybrid plants - Enabling cost effective synergies,” Renew. Energy, vol. 67, pp. 178–185, 2014, doi: 10.1016/j.renene.2013.11.037. [21] S. N. Naserabad, A. Mehrpanahi, and G. Ahmadi, “Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications,” Energy, vol. 159, pp. 277–293, 2018, doi: 10.1016/j.energy.2018.06.130. [22] S. Kabiri, M. H. Khoshgoftar Manesh, and M. Amidpour, “4E analysis and evaluation of a steam power plant full repowering in various operations,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 00, no. 00, pp. 1–21, 2020, doi: 10.1080/15567036.2020.1761484. [23] Y. Yang, Q. Yan, R. Zhai, A. Kouzani, and E. Hu, “An efficient way to use medium-or low temperature solar heat for power generation - Integration into conventional power plant,” Appl. Therm. Eng., vol. 31, no. 2–3, pp. 157–162, 2011, doi: 10.1016/j.applthermaleng.2010.08.024. [24] E. Shagdar, B. G. Lougou, Y. Shuai, J. Anees, C. Damdinsuren, and H. Tan, “Performance analysis and techno-economic evaluation of 300 MW solar-assisted BIBLIOGRAPHY 221 power generation system in the whole operation conditions,” Appl. Energy, vol. 264, no. December 2019, p. 114744, 2020, doi: 10.1016/j.apenergy.2020.114744. [25] E. K. Matjanov and Z. M. Akhrorkhujaeva, “Solar repowering existing steam cycle power plants,” Int. J. Thermofluids, vol. 17, 2023, doi: 10.1016/j.ijft.2023.100285. [26] R. J. Zoschak, S. F. Wu, and F. W. Corporation, “Energy To a Fossil-Fueled Central,” vol. 17, pp. 297–305, 1975. [27] Y. Ying and E. J. Hu, “Thermodynamic advantages of using solar energy in the regenerative Rankine power plant,” Appl. Therm. Eng., vol. 19, no. 11, pp. 1173–1180, 1999, doi: 10.1016/S1359-4311(98)00114-8. [28] N. T. Raj, S. Iniyan, and R. Goic, “A review of renewable energy based cogeneration technologies,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3640–3648, 2011, doi: 10.1016/j.rser.2011.06.003. [29] A. Franco and A. Russo, “Combined cycle plant efficiency increase based on the optimization of the heat recovery steam generator operating parameters,” Int. J. Therm. Sci., vol. 41, no. 9, pp. 843–859, 2002, doi: 10.1016/S1290-0729(02)01378-9. [30] M. Arshad and S. Ahmed, “Cogeneration through bagasse: A renewable strategy to meet the future energy needs,” Renew. Sustain. Energy Rev., vol. 54, pp. 732–737, 2016, doi: 10.1016/j.rser.2015.10.145. [31] M. Nasr et al., “Dual production of hydrogen and biochar from industrial effluent containing phenolic compounds,” Fuel, vol. 301, no. February, 2021, doi: 10.1016/j.fuel.2021.121087. [32] J. Rogelj, D. L. McCollum, and K. Riahi, “The UN’s ‘Sustainable Energy for All’ initiative is compatible with a warming limit of 2C,” Nat. Clim. Chang., vol. 3, no. 6, pp. 545–551, 2013, doi: 10.1038/nclimate1806. [33] M. N. Anwar et al., “Emerging challenges of air pollution and particulate matter in BIBLIOGRAPHY 222 China, India, and Pakistan and mitigating solutions,” J. Hazard. Mater., vol. 416, no. August 2020, 2021, doi: 10.1016/j.jhazmat.2021.125851. [34] REN 21 Members, “Renewables 2019 global status report 2019,” 2019. [35] L. S. Hoyos-Gómez, J. F. Ruiz-Muñoz, and B. J. Ruiz-Mendoza, “Short-term forecasting of global solar irradiance in tropical environments with incomplete data,” Appl. Energy, vol. 307, 2022, doi: 10.1016/j.apenergy.2021.118192. [36] Ş. E. Can Şener, J. L. Sharp, and A. Anctil, “Factors impacting diverging paths of renewable energy: A review,” Renewable and Sustainable Energy Reviews, vol. 81. 2018, doi: 10.1016/j.rser.2017.06.042. [37] M. Iqbal, An Introduction to Solar Radiation. 1983. [38] IRENA, The Power to Change: Solar and Wind Cost Reduction Potential to 2025, no. June. 2016. [39] E. L. Delaney et al., “An integrated geospatial approach for repurposing wind turbine blades,” Resour. Conserv. Recycl., vol. 170, 2021, doi: 10.1016/j.resconrec.2021.105601. [40] A. Hoke, R. Butler, J. Hambrick, and B. Kroposki, “Steady-state analysis of maximum photovoltaic penetration levels on typical distribution feeders,” IEEE Trans. Sustain. Energy, vol. 4, no. 2, 2013, doi: 10.1109/TSTE.2012.2225115. [41] S. Olówósejéjé, P. Leahy, and A. P. Morrison, “Optimising photovoltaic-centric hybrid power systems for energy autonomy,” Energy Reports, vol. 7, 2021, doi: 10.1016/j.egyr.2021.03.039. [42] R. Bayindir, I. Colak, G. Fulli, and K. Demirtas, “Smart grid technologies and applications,” Renew. Sustain. Energy Rev., vol. 66, pp. 499–516, 2016, doi: 10.1016/j.rser.2016.08.002. [43] J. Alonso-Montesinos, F. J. Batlles, and C. Portillo, “Solar irradiance forecasting at one- BIBLIOGRAPHY 223 minute intervals for different sky conditions using sky camera images,” Energy Convers. Manag., vol. 105, 2015, doi: 10.1016/j.enconman.2015.09.001. [44] S. D. Miller, M. A. Rogers, J. M. Haynes, M. Sengupta, and A. K. Heidinger, “Short term solar irradiance forecasting via satellite/model coupling,” Solar Energy, vol. 168. 2018, doi: 10.1016/j.solener.2017.11.049. [45] F. M. Lopes, H. G. Silva, R. Salgado, A. Cavaco, P. Canhoto, and M. Collares-Pereira, “Short-term forecasts of GHI and DNI for solar energy systems operation: assessment of the ECMWF integrated forecasting system in southern Portugal,” Sol. Energy, vol. 170, 2018, doi: 10.1016/j.solener.2018.05.039. [46] K. Benmouiza and A. Cheknane, “Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models,” Theor. Appl. Climatol., vol. 124, no. 3–4, 2016, doi: 10.1007/s00704-015-1469-z. [47] L. Massidda and M. Marrocu, “Use of Multilinear Adaptive Regression Splines and numerical weather prediction to forecast the power output of a PV plant in Borkum, Germany,” Sol. Energy, vol. 146, 2017, doi: 10.1016/j.solener.2017.02.007. [48] L. M. Halabi, S. Mekhilef, and M. Hossain, “Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation,” Appl. Energy, vol. 213, 2018, doi: 10.1016/j.apenergy.2018.01.035. [49] A. Wilinski, “Time series modeling and forecasting based on a Markov chain with changing transition matrices,” Expert Syst. Appl., vol. 133, 2019, doi: 10.1016/j.eswa.2019.04.067. [50] G. M. Yagli, D. Yang, and D. Srinivasan, “Automatic hourly solar forecasting using machine learning models,” Renew. Sustain. Energy Rev., vol. 105, 2019, doi: 10.1016/j.rser.2019.02.006. [51] C. Voyant et al., “Machine learning methods for solar radiation forecasting: A review,” BIBLIOGRAPHY 224 Renewable Energy, vol. 105. 2017, doi: 10.1016/j.renene.2016.12.095. [52] Z. Boger and H. Guterman, “Knowledge extraction from artificial neural networks models,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1997, vol. 4, doi: 10.1109/icsmc.1997.633051. [53] A. Sharma and A. Kakkar, “Forecasting daily global solar irradiance generation using machine learning,” Renewable and Sustainable Energy Reviews, vol. 82. 2018, doi: 10.1016/j.rser.2017.08.066. [54] S. A. Haider, M. Sajid, and S. Iqbal, “Forecasting hydrogen production potential in islamabad from solar energy using water electrolysis,” Int. J. Hydrogen Energy, vol. 46, no. 2, 2021, doi: 10.1016/j.ijhydene.2020.10.059. [55] K. Qadeer, A. Ahmad, M. A. Qyyum, A. S. Nizami, and M. Lee, “Developing machine learning models for relative humidity prediction in air-based energy systems and environmental management applications,” J. Environ. Manage., vol. 292, 2021, doi: 10.1016/j.jenvman.2021.112736. [56] H. Liu, X. Mi, Y. Li, Z. Duan, and Y. Xu, “Smart wind speed deep learning based multi step forecasting model using singular spectrum analysis, convolutional Gated Recurrent Unit network and Support Vector Regression,” Renew. Energy, vol. 143, 2019, doi: 10.1016/j.renene.2019.05.039. [57] Y. Liu, “Novel volatility forecasting using deep learning–Long Short Term Memory Recurrent Neural Networks,” Expert Syst. Appl., vol. 132, 2019, doi: 10.1016/j.eswa.2019.04.038. [58] I. Majumder, P. K. Dash, and R. Bisoi, “Variational mode decomposition based low rank robust kernel extreme learning machine for solar irradiation forecasting,” Energy Convers. Manag., vol. 171, 2018, doi: 10.1016/j.enconman.2018.06.021. [59] R. H. Inman, H. T. C. Pedro, and C. F. M. Coimbra, “Solar forecasting methods for BIBLIOGRAPHY 225 renewable energy integration,” Progress in Energy and Combustion Science, vol. 39, no. 6. 2013, doi: 10.1016/j.pecs.2013.06.002. [60] A. Tuohy et al., “Solar Forecasting: Methods, Challenges, and Performance,” IEEE Power Energy Mag., vol. 13, no. 6, 2015, doi: 10.1109/MPE.2015.2461351. [61] B. Sivaneasan, C. Y. Yu, and K. P. Goh, “Solar Forecasting using ANN with Fuzzy Logic Pre-processing,” in Energy Procedia, 2017, vol. 143, doi: 10.1016/j.egypro.2017.12.753. [62] X. Qing and Y. Niu, “Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM,” Energy, vol. 148, 2018, doi: 10.1016/j.energy.2018.01.177. [63] C. Feng, M. Cui, B. M. Hodge, S. Lu, H. F. Hamann, and J. Zhang, “Unsupervised Clustering-Based Short-Term Solar Forecasting,” IEEE Trans. Sustain. Energy, vol. 10, no. 4, 2019, doi: 10.1109/TSTE.2018.2881531. [64] Z. Song and L. E. Brown, “Multi-dimensional Evaluation of Temporal Neural Networks on Solar Irradiance Forecasting,” in 2019 IEEE PES Innovative Smart Grid Technologies Asia, ISGT 2019, 2019, doi: 10.1109/ISGT-Asia.2019.8881784. [65] B. Gao, X. Huang, J. Shi, Y. Tai, and J. Zhang, “Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks,” Renew. Energy, vol. 162, 2020, doi: 10.1016/j.renene.2020.09.141. [66] H. Zang, L. Liu, L. Sun, L. Cheng, Z. Wei, and G. Sun, “Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations,” Renew. Energy, vol. 160, 2020, doi: 10.1016/j.renene.2020.05.150. [67] B. Jalali, T. Jiang, S. Bielawski, D. Solli, C. Ropers, and G. Herink, “How to capture brilliant flashes of information,” 2021, doi: 10.1117/12.2578843. [68] X. Luo, D. Zhang, and X. Zhu, “Combining transfer learning and constrained long short term memory for power generation forecasting of newly-constructed photovoltaic BIBLIOGRAPHY 226 plants,” Renew. Energy, vol. 185, 2022, doi: 10.1016/j.renene.2021.12.104. [69] H. Acikgoz, “A novel approach based on integration of convolutional neural networks and deep feature selection for short-term solar radiation forecasting,” Appl. Energy, vol. 305, 2022, doi: 10.1016/j.apenergy.2021.117912. [70] L. Visser, T. AlSkaif, and W. van Sark, “Operational day-ahead solar power forecasting for aggregated PV systems with a varying spatial distribution,” Renew. Energy, vol. 183, 2022, doi: 10.1016/j.renene.2021.10.102. [71] S. A. Kalogirou, “Solar thermal collectors and applications,” Prog. Energy Combust. Sci., vol. 30, no. 3, pp. 231–295, 2004, doi: 10.1016/j.pecs.2004.02.001. [72] H. Price et al., “Advances in parabolic trough solar power technology,” J. Sol. Energy Eng. Trans. ASME, vol. 124, no. 2, pp. 109–125, 2002, doi: 10.1115/1.1467922. [73] A. Fernández-García, E. Zarza, L. Valenzuela, and M. Pérez, “Parabolic-trough solar collectors and their applications,” Renew. Sustain. Energy Rev., vol. 14, no. 7, pp. 1695– 1721, 2010, doi: 10.1016/j.rser.2010.03.012. [74] D. Mills, “Advances in solar thermal electricity technology,” Sol. Energy, vol. 76, no. 1–3, pp. 19–31, 2004, doi: 10.1016/S0038-092X(03)00102-6. [75] M. T. Dunham and B. D. Iverson, “High-efficiency thermodynamic power cycles for concentrated solar power systems,” Renew. Sustain. Energy Rev., vol. 30, pp. 758–770, 2014, doi: 10.1016/j.rser.2013.11.010. [76] A. Darwish Ahmad, A. M. Abubaker, Y. S. H. Najjar, and Y. M. A. Manaserh, “Power boosting of a combined cycle power plant in Jordan: An integration of hybrid inlet cooling & solar systems,” Energy Convers. Manag., vol. 214, no. April, p. 112894, 2020, doi: 10.1016/j.enconman.2020.112894. [77] H. Yan, X. Li, M. Liu, D. Chong, and J. Yan, “Performance analysis of a solar-aided coal-fired power plant in off-design working conditions and dynamic process,” Energy BIBLIOGRAPHY 227 Convers. Manag., vol. 220, no. May, p. 113059, 2020, doi: 10.1016/j.enconman.2020.113059. [78] N. Zhang et al., “Operation strategy and dynamic performance study of integrated solar combined-cycle system,” Energy Convers. Manag., vol. 228, no. August, p. 113716, 2021, doi: 10.1016/j.enconman.2020.113716. [79] N. Abdelhafidi, İ. H. Yılmaz, and N. E. I. Bachari, “An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions,” Energy Convers. Manag., vol. 220, no. June, 2020, doi: 10.1016/j.enconman.2020.113066. [80] J. Wu, Y. Han, H. Hou, and Y. Sun, “Optimization of solar field layout and flow velocity in a solar-aided power generation system,” Energy, vol. 208, p. 118344, 2020, doi: 10.1016/j.energy.2020.118344. [81] G. Wang, Y. Cao, S. Wang, Z. Chen, and P. Hu, “Design and preliminary performance analysis of a novel solar-gas combined cycle system,” Appl. Therm. Eng., vol. 172, no. February, p. 115184, 2020, doi: 10.1016/j.applthermaleng.2020.115184. [82] N. A. Moharram, S. Bayoumi, A. A. Hanafy, and W. M. El-Maghlany, “Techno economic analysis of a combined concentrated solar power and water desalination plant,” Energy Convers. Manag., vol. 228, p. 113629, Jan. 2021, doi: 10.1016/J.ENCONMAN.2020.113629. [83] C. Huang, Y. Bai, Y. Yan, Q. Zhang, N. Zhang, and W. Wang, “Multi-objective co optimization of design and operation in an independent solar-based distributed energy system using genetic algorithm,” Energy Convers. Manag., vol. 271, p. 116283, Nov. 2022, doi: 10.1016/J.ENCONMAN.2022.116283. [84] B. Jin, “Impact of renewable energy penetration in power systems on the optimization and operation of regional distributed energy systems,” Energy, vol. 273, p. 127201, Jun. 2023, doi: 10.1016/J.ENERGY.2023.127201. BIBLIOGRAPHY 228 [85] J. Guo et al., “Thermodynamic performance analyses and optimization design method of a novel distributed energy system coupled with hybrid-energy storage,” Renew. Energy, vol. 182, pp. 1182–1200, Jan. 2022, doi: 10.1016/J.RENENE.2021.11.035. [86] A. Boretti and S. Al-Zubaidy, “A case study on combined cycle power plant integrated with solar energy in Trinidad and Tobago,” Sustain. Energy Technol. Assessments, vol. 32, no. July 2018, pp. 100–110, 2019, doi: 10.1016/j.seta.2019.02.006. [87] A. AlKassem, “A performance evaluation of an integrated solar combined cycle power plant with solar tower in Saudi Arabia,” Renew. Energy Focus , vol. 39, 2021, doi: 10.1016/j.ref.2021.08.001. [88] N. Noor and S. Muneer, “Concentrating Solar Power (CSP) and its prospect in Bangladesh,” Proc. 1st Int. Conf. Dev. Renew. Energy Technol. ICDRET 2009, no. May, pp. 69–73, 2009, doi: 10.1109/icdret.2009.5454207. [89] A. Kasaeian, A. Kouravand, M. A. Vaziri Rad, S. Maniee, and F. Pourfayaz, “Cavity receivers in solar dish collectors: A geometric overview,” Renew. Energy, vol. 169, 2021, doi: 10.1016/j.renene.2020.12.106. [90] E. Bellos, S. Pavlovic, V. Stefanovic, C. Tzivanidis, and B. B. Nakomcic-Smaradgakis, “Parametric analysis and yearly performance of a trigeneration system driven by solar dish collectors,” Int. J. Energy Res., 2019, doi: 10.1002/er.4380. [91] P. H. Shaikh, A. A. Lashari, Z. H. Leghari, and Z. A. Memon, “Techno-enviro-economic assessment of a stand-alone parabolic solar dish stirling system for electricity generation,” Int. J. Energy Res., vol. 45, no. 7, 2021, doi: 10.1002/er.6513. [92] F. Piadehrouhi, B. Ghorbani, M. Miansari, and M. Mehrpooya, “Development of a new integrated structure for simultaneous generation of power and liquid carbon dioxide using solar dish collectors,” Energy, vol. 179, 2019, doi: 10.1016/j.energy.2019.05.025. [93] A. Z. Hafez, A. Soliman, K. A. El-Metwally, and I. M. Ismail, “Design analysis factors BIBLIOGRAPHY 229 and specifications of solar dish technologies for different systems and applications,” Renewable and Sustainable Energy Reviews, vol. 67. 2017, doi: 10.1016/j.rser.2016.09.077. [94] S. Abdelhady, “Performance and cost evaluation of solar dish power plant: sensitivity analysis of levelized cost of electricity (LCOE) and net present value (NPV),” Renew. Energy, vol. 168, 2021, doi: 10.1016/j.renene.2020.12.074. [95] P. Esfanjani, S. Jahangiri, A. Heidarian, M. S. Valipour, and S. Rashidi, “A review on solar-powered cooling systems coupled with parabolic dish collector and linear Fresnel reflector,” Environmental Science and Pollution Research, vol. 29, no. 28. 2022, doi: 10.1007/s11356-022-19993-3. [96] V. P. Stefanovic, S. R. Pavlovic, E. Bellos, and C. Tzivanidis, “A detailed parametric analysis of a solar dish collector,” Sustain. Energy Technol. Assessments, vol. 25, 2018, doi: 10.1016/j.seta.2017.12.005. [97] P. Pourmoghadam and M. Mehrpooya, “Dynamic modeling and analysis of transient behavior of an integrated parabolic solar dish collector and thermochemical energy storage power plant,” J. Energy Storage, vol. 42, 2021, doi: 10.1016/j.est.2021.103121. [98] H. Allouhi, A. Allouhi, M. S. Buker, S. Zafar, and A. Jamil, “Recent advances, challenges, and prospects in solar dish collectors: Designs, applications, and optimization frameworks,” Solar Energy Materials and Solar Cells, vol. 241. 2022, doi: 10.1016/j.solmat.2022.111743. [99] L. A. Weinstein, J. Loomis, B. Bhatia, D. M. Bierman, E. N. Wang, and G. Chen, “Concentrating Solar Power,” Chem. Rev., vol. 115, no. 23, pp. 12797–12838, 2015, doi: 10.1021/acs.chemrev.5b00397. [100] A. Fernández-García, M. E. Cantos-Soto, M. Röger, C. Wieckert, C. Hutter, and L. Martínez-Arcos, “Durability of solar reflector materials for secondary concentrators BIBLIOGRAPHY 230 used in CSP systems,” Sol. Energy Mater. Sol. Cells, vol. 130, 2014, doi: 10.1016/j.solmat.2014.06.043. [101] D. Barlev, R. Vidu, and P. Stroeve, “Innovation in concentrated solar power,” Solar Energy Materials and Solar Cells, vol. 95, no. 10. 2011, doi: 10.1016/j.solmat.2011.05.020. [102] M. Brogren, A. Helgesson, B. Karlsson, J. Nilsson, and A. Roos, “Optical properties, durability, and system aspects of a new aluminium-polymer-laminated steel reflector for solar concentrators,” Sol. Energy Mater. Sol. Cells, vol. 82, no. 3, 2004, doi: 10.1016/j.solmat.2004.01.029. [103] S. Braendle, “Benefits of metal reflective surfaces for concentrating solar applications,” in 39th ASES National Solar Conference 2010, SOLAR 2010, 2010, vol. 1, doi: 10.1117/12.853749. [104] C. E. Kennedy and K. Terwilliger, “Optical durability of candidate solar reflectors,” J. Sol. Energy Eng. Trans. ASME, vol. 127, no. 2, 2005, doi: 10.1115/1.1861926. [105] R. Pitz-Paal, N. B. Botero, and A. Steinfeld, “Heliostat field layout optimization for high-temperature solar thermochemical processing,” Sol. Energy, vol. 85, no. 2, 2011, doi: 10.1016/j.solener.2010.11.018. [106] C. J. Noone, M. Torrilhon, and A. Mitsos, “Heliostat field optimization: A new computationally efficient model and biomimetic layout,” Sol. Energy, vol. 86, no. 2, 2012, doi: 10.1016/j.solener.2011.12.007. [107] C. K. Ho and B. D. Iverson, “Review of high-temperature central receiver designs for concentrating solar power,” Renewable and Sustainable Energy Reviews, vol. 29. 2014, doi: 10.1016/j.rser.2013.08.099. [108] S. Kuravi, J. Trahan, D. Y. Goswami, M. M. Rahman, and E. K. Stefanakos, “Thermal energy storage technologies and systems for concentrating solar power plants,” Progress BIBLIOGRAPHY 231 in Energy and Combustion Science, vol. 39, no. 4. 2013, doi: 10.1016/j.pecs.2013.02.001. [109] U. Pelay, L. Luo, Y. Fan, D. Stitou, and M. Rood, “Thermal energy storage systems for concentrated solar power plants,” Renewable and Sustainable Energy Reviews, vol. 79. 2017, doi: 10.1016/j.rser.2017.03.139. [110] M. S. Jamel, A. Abd Rahman, and A. H. Shamsuddin, “Advances in the integration of solar thermal energy with conventional and non-conventional power plants,” Renew. Sustain. Energy Rev., vol. 20, pp. 71–81, 2013, doi: 10.1016/j.rser.2012.10.027. [111] S. Ghorpade and P. Goswami, “Solar-Aided Coal Fired Power Generation-A review,” in ICPECTS 2020 - IEEE 2nd International Conference on Power, Energy, Control and Transmission Systems, Proceedings, 2020, doi: 10.1109/ICPECTS49113.2020.9337000. [112] A. Ummadisingu and M. S. Soni, “Concentrating solar power - Technology, potential and policy in India,” Renewable and Sustainable Energy Reviews, vol. 15, no. 9. 2011, doi: 10.1016/j.rser.2011.07.040. [113] M. B. Hayat, D. Ali, K. C. Monyake, L. Alagha, and N. Ahmed, “Solar energy—A look into power generation, challenges, and a solar-powered future,” International Journal of Energy Research, vol. 43, no. 3. 2019, doi: 10.1002/er.4252. [114] J. I. Burgaleta, S. Arias, and D. Ramirez, “Gemasolar, the first tower thermosolar commercial plant with molten salt storage,” Solarpaces, pp. 1–8, 2011. [115] M. T. Islam, N. Huda, A. B. Abdullah, and R. Saidur, “A comprehensive review of state of-the-art concentrating solar power (CSP) technologies: Current status and research trends,” Renew. Sustain. Energy Rev., vol. 91, no. November 2017, pp. 987–1018, 2018, doi: 10.1016/j.rser.2018.04.097. [116] S. Izquierdo, C. Montañs, C. Dopazo, and N. Fueyo, “Analysis of CSP plants for the BIBLIOGRAPHY 232 definition of energy policies: The influence on electricity cost of solar multiples, capacity factors and energy storage,” Energy Policy, vol. 38, no. 10, pp. 6215–6221, 2010, doi: 10.1016/j.enpol.2010.06.009. [117] SolarPACES, “CSP projects around the world.” https://www.solarpaces.org/worldwide csp/csp-projects-around-the-world/ (accessed Jun. 02, 2024). [118] A. Palacios, C. Barreneche, M. E. Navarro, and Y. Ding, “Thermal energy storage technologies for concentrated solar power – A review from a materials perspective,” Renewable Energy, vol. 156. 2020, doi: 10.1016/j.renene.2019.10.127. [119] J. Johnson, “Fossil Fuels Made Up 82% of Global Energy Consumption in 2022: New Data,” Common Dreams, 2023. https://www.commondreams.org/news/fossil-fuels global-energy-consumption (accessed Apr. 29, 2024). [120] G. R. Ahmadi and D. Toghraie, “Energy and exergy analysis of Montazeri Steam Power Plant in Iran,” Renew. Sustain. Energy Rev., vol. 56, pp. 454–463, 2016, doi: 10.1016/j.rser.2015.11.074. [121] O. J. Khaleel, F. Basim Ismail, T. Khalil Ibrahim, and S. H. bin Abu Hassan, “Energy and exergy analysis of the steam power plants: A comprehensive review on the Classification, Development, Improvements, and configurations,” Ain Shams Eng. J., vol. 13, no. 3, p. 101640, 2022, doi: 10.1016/j.asej.2021.11.009. [122] L. Wu et al., “Component and process based exergy evaluation of a 600MW coal-fired power plant,” Energy Procedia, vol. 61, pp. 2097–2100, 2014, doi: 10.1016/j.egypro.2014.12.084. [123] S. Adibhatla and S. C. Kaushik, “Energy and exergy analysis of a super critical thermal power plant at various load conditions under constant and pure sliding pressure operation,” Appl. Therm. Eng., vol. 73, no. 1, pp. 51–65, 2014, doi: 10.1016/j.applthermaleng.2014.07.030. BIBLIOGRAPHY 233 [124] T. K. Ibrahim et al., “A comprehensive review on the exergy analysis of combined cycle power plants,” Renew. Sustain. Energy Rev., vol. 90, no. July 2016, pp. 835–850, 2018, doi: 10.1016/j.rser.2018.03.072. [125] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou, “Waste heat recovery technologies and applications,” Therm. Sci. Eng. Prog., vol. 6, no. January, pp. 268–289, 2018, doi: 10.1016/j.tsep.2018.04.017. [126] R. Carapellucci and L. Giordano, “Regenerative gas turbines and steam injection for repowering combined cycle power plants: Design and part-load performance,” Energy Convers. Manag., vol. 227, 2021, doi: 10.1016/j.enconman.2020.113519. [127] C. Amaris and J. C. Campos, “Assessment of power generation capacity and energy losses in a combined power plant with triple vapour regeneration,” Case Stud. Therm. Eng., vol. 49, no. June, pp. 1–12, 2023, doi: 10.1016/j.csite.2023.103246. [128] A. T. Watban Khalid Fahmi, K. Reza Kashyzadeh, and S. Ghorbani, “A comprehensive review on mechanical failures cause vibration in the gas turbine of combined cycle power plants,” Engineering Failure Analysis, vol. 134. 2022, doi: 10.1016/j.engfailanal.2022.106094. [129] S. A. Zaman and S. Ghosh, “Energetic, exergetic, economic and environmental performance of a rice husk gasification based carbon negative combined power and cooling plant,” Heliyon, vol. 10, no. 1, p. e23070, 2024, doi: 10.1016/j.heliyon.2023.e23070. [130] Z. Han, H. Zhang, D. Wu, and F. Ma, “Performance optimization for a novel combined cooling, heating and power-organic Rankine cycle system with improved following electric load strategy based on different objectives,” Energy Convers. Manag., vol. 221, no. August, 2020, doi: 10.1016/j.enconman.2020.113294. [131] M. R. Majdi Yazdi, F. Ommi, M. A. Ehyaei, and M. A. Rosen, “Comparison of gas BIBLIOGRAPHY 234 turbine inlet air cooling systems for several climates in Iran using energy, exergy, economic, and environmental (4E) analyses,” Energy Convers. Manag., vol. 216, no. May, p. 112944, 2020, doi: 10.1016/j.enconman.2020.112944. [132] M. H. Khoshgoftar Manesh and M. A. Rosen, “Combined Cycle and Steam Gas-Fired Power Plant Analysis through Exergoeconomic and Extended Combined Pinch and Exergy Methods,” J. Energy Eng., vol. 144, no. 2, 2018, doi: 10.1061/(asce)ey.1943- 7897.0000506. [133] X. Y. Ren, Z. H. Wang, and L. L. Li, “Multi-objective optimization and evaluation of hybrid combined cooling, heating and power system considering thermal energy storage,” J. Energy Storage, vol. 86, no. PB, p. 111214, 2024, doi: 10.1016/j.est.2024.111214. [134] X. Y. Ren and L. L. Li, “Economic, energy and environmental analysis and evaluation of hybrid CCHP system considering different buildings: A two-level optimization model,” Appl. Therm. Eng., vol. 241, 2024, doi: 10.1016/j.applthermaleng.2023.122293. [135] M. Wang, G. Liu, and C. W. Hui, “Novel shortcut optimization model for regenerative steam power plant,” Energy, vol. 138, pp. 529–541, 2017, doi: 10.1016/j.energy.2017.07.088. [136] T. Liu, G. Zhang, Y. Li, and Y. Yang, “Performance analysis of partially recuperative gas turbine combined cycle under off-design conditions,” Energy Convers. Manag., vol. 162, no. January, pp. 55–65, 2018, doi: 10.1016/j.enconman.2018.01.075. [137] J. Q. Guo, M. J. Li, J. L. Xu, J. J. Yan, and T. Ma, “Energy, exergy and economic (3E) evaluation and conceptual design of the 1000 MW coal-fired power plants integrated with S-CO2 Brayton cycles,” Energy Convers. Manag., vol. 211, no. September 2019, p. 112713, 2020, doi: 10.1016/j.enconman.2020.112713. [138] J. Settino, V. Ferraro, and P. Morrone, “Energy analysis of novel hybrid solar and natural BIBLIOGRAPHY 235 gas combined cycle plants,” Appl. Therm. Eng., vol. 230, 2023, doi: 10.1016/j.applthermaleng.2023.120673. [139] International Energy Agency, “World Energy Outlook 2023,” 2023. https://www.iea.org/reports/world-energy-outlook-2023 (accessed May 03, 2024). [140] P. A. Østergaard, N. Duic, Y. Noorollahi, and S. Kalogirou, “Renewable energy for sustainable development,” Renewable Energy, vol. 199. 2022, doi: 10.1016/j.renene.2022.09.065. [141] T. Güney, “Renewable energy, non-renewable energy and sustainable development,” Int. J. Sustain. Dev. World Ecol., vol. 26, no. 5, pp. 389–397, 2019, doi: 10.1080/13504509.2019.1595214. [142] Carbon Tracker, “Sky the limit report_Apr21-compressed,” 2021. https://carbontracker.org/reports/the-skys-the-limit-solar-wind/sky-the-limit report_apr21-compressed/ (accessed May 03, 2024). [143] I. Bouarfa, M. El Ydrissi, H. El Hafdaoui, M. Boujoudar, A. Jamil, and E. G. Bennouna, “Developing optical and thermal models with experimental validation of parabolic trough collector for moroccan industrial heat applications,” Sol. Energy Mater. Sol. Cells, vol. 266, 2024, doi: 10.1016/j.solmat.2023.112676. [144] K. E. Elfeky and Q. Wang, “Techno-economic assessment and optimization of the performance of solar power tower plant in Egypt’s climate conditions,” Energy Convers. Manag., vol. 280, 2023, doi: 10.1016/j.enconman.2023.116829. [145] O. Behar, A. Khellaf, K. Mohammedi, and S. Ait-Kaci, “A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology,” Renew. Sustain. Energy Rev., vol. 39, pp. 223–250, 2014, doi: 10.1016/j.rser.2014.07.066. [146] M. T. White, G. Bianchi, L. Chai, S. A. Tassou, and A. I. Sayma, “Review of supercritical CO2 technologies and systems for power generation,” Appl. Therm. Eng., BIBLIOGRAPHY 236 vol. 185, p. 116447, 2021, doi: 10.1016/j.applthermaleng.2020.116447. [147] F. Crespi, G. Gavagnin, D. Sánchez, and G. S. Martínez, “Supercritical carbon dioxide cycles for power generation : A review,” Appl. Energy, vol. 195, pp. 152–183, 2017, doi: 10.1016/j.apenergy.2017.02.048. [148] G. Ahmadi, D. Toghraie, and O. A. Akbari, “Solar parallel feed water heating repowering of a steam power plant: A case study in Iran,” Renew. Sustain. Energy Rev., vol. 77, no. May 2016, pp. 474–485, 2017, doi: 10.1016/j.rser.2017.04.019. [149] J. Baigorri, F. Zaversky, and D. Astrain, “Massive grid-scale energy storage for next generation concentrated solar power: A review of the potential emerging concepts,” Renewable and Sustainable Energy Reviews, vol. 185. 2023, doi: 10.1016/j.rser.2023.113633. [150] P. Ghorbani et al., “Modeling and thermoeconomic analysis of a 60 MW combined heat and power cycle via feedwater heating compared to a solar power tower,” Sustain. Energy Technol. Assessments, vol. 54, 2022, doi: 10.1016/j.seta.2022.102861. [151] M. Shoaei, Y. Noorollahi, A. Hajinezhad, and S. F. Moosavian, “A review of the applications of artificial intelligence in renewable energy systems: An approach-based study,” Energy Conversion and Management, vol. 306. 2024, doi: 10.1016/j.enconman.2024.118207. [152] J. Faritha Banu, R. Atul Mahajan, U. Sakthi, V. Kumar Nassa, D. Lakshmi, and V. Nadanakumar, “Artificial intelligence with attention based BiLSTM for energy storage system in hybrid renewable energy sources,” Sustain. Energy Technol. Assessments, vol. 52, 2022, doi: 10.1016/j.seta.2022.102334. [153] A. Entezari, A. Aslani, R. Zahedi, and Y. Noorollahi, “Artificial intelligence and machine learning in energy systems: A bibliographic perspective,” Energy Strategy Reviews, vol. 45. 2023, doi: 10.1016/j.esr.2022.101017. BIBLIOGRAPHY 237 [154] A. Gil et al., “State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1. 2010, doi: 10.1016/j.rser.2009.07.035. [155] S. M. Hasnain, “Review on sustainable thermal energy storage technologies, part I: Heat storage materials and techniques,” Energy Convers. Manag., vol. 39, no. 11, pp. 1127– 1138, 1998. [156] B. Zalba, J. M. Marín, L. F. Cabeza, and H. Mehling, “Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications,” Applied Thermal Engineering, vol. 23, no. 3. 2003, doi: 10.1016/S1359-4311(02)00192-8. [157] M. Liu et al., “Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies,” Renew. Sustain. Energy Rev., vol. 53, pp. 1411–1432, 2016, doi: 10.1016/j.rser.2015.09.026. [158] A. G. Fernández, J. Gomez-Vidal, E. Oró, A. Kruizenga, A. Solé, and L. F. Cabeza, “Mainstreaming commercial CSP systems: A technology review,” Renew. Energy, vol. 140, pp. 152–176, 2019, doi: 10.1016/j.renene.2019.03.049. [159] I. Arias, J. Cardemil, E. Zarza, L. Valenzuela, and R. Escobar, “Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids,” Renewable and Sustainable Energy Reviews, vol. 168. 2022, doi: 10.1016/j.rser.2022.112844. [160] A. Kurbanoglu, I. Alagoz, and A. Elmali, “Full repowering of existing fuel-oil fired power plant: Modeling and performance evaluation,” Energy Convers. Manag., vol. 270, 2022, doi: 10.1016/j.enconman.2022.116288. [161] Q. ul A. Ali, U. Khayyam, and U. Nazar, “Energy production and CO2 emissions: The case of coal fired power plants under China Pakistan economic corridor,” J. Clean. Prod., vol. 281, no. xxxx, p. 124974, 2021, doi: 10.1016/j.jclepro.2020.124974. BIBLIOGRAPHY 238 [162] C. Wu et al., “A comprehensive review of carbon capture science and technologies,” Carbon Capture Sci. Technol., vol. 11, no. September 2023, p. 100178, 2023, doi: 10.1016/j.ccst.2023.100178. [163] S. F. Moosavian, Y. Noorollahi, and M. Shoaei, “Renewable energy resources utilization planning for sustainable energy system development on a stand-alone island,” J. Clean. Prod., vol. 439, 2024, doi: 10.1016/j.jclepro.2024.140892. [164] O. J. Khaleel, T. K. Ibrahim, F. B. Ismail, A. T. Al-Sammarraie, and S. H. bin A. Hassan, “Modeling and analysis of optimal performance of a coal-fired power plant based on exergy evaluation,” Energy Reports, vol. 8, pp. 2179–2199, 2022, doi: 10.1016/j.egyr.2022.01.072. [165] S. Espatolero, L. M. Romeo, and C. Cortés, “Efficiency improvement strategies for the feedwater heaters network designing in supercritical coal-fired power plants,” Appl. Therm. Eng., vol. 73, no. 1, pp. 449–460, 2014, doi: 10.1016/j.applthermaleng.2014.08.011. [166] Y. Li, Y. Wang, L. Cao, P. Hu, and W. Han, “Modeling for the performance evaluation of 600 MW supercritical unit operating No.0 high pressure heater,” Energy, vol. 149, no. 0, pp. 639–661, 2018, doi: 10.1016/j.energy.2018.01.103. [167] Y. Zhao, C. Wang, M. Liu, D. Chong, and J. Yan, “Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660 MW supercritical coal fired power plant: A dynamic simulation,” Appl. Energy, vol. 212, no. July 2017, pp. 1295–1309, 2018, doi: 10.1016/j.apenergy.2018.01.017. [168] Z. Liu, C. Wang, J. Fan, M. Liu, Y. Xing, and J. Yan, “Enhancing the flexibility and stability of coal-fired power plants by optimizing control schemes of throttling high pressure extraction steam,” Energy, vol. 288, 2024, doi: 10.1016/j.energy.2023.129756. [169] N. Si et al., “Exergy analysis of a 1000 MW double reheat ultra-supercritical power BIBLIOGRAPHY 239 plant,” Energy Convers. Manag., vol. 147, pp. 155–165, 2017, doi: 10.1016/j.enconman.2017.05.045. [170] L. Kang et al., “Research on energy management of integrated energy system coupled with organic Rankine cycle and power to gas,” Energy Convers. Manag., vol. 287, 2023, doi: 10.1016/j.enconman.2023.117117. [171] Y. Li, L. Zhou, G. Xu, Y. Fang, S. Zhao, and Y. Yang, “Thermodynamic analysis and optimization of a double reheat system in an ultra-supercritical power plant,” Energy, vol. 74, no. C, pp. 202–214, 2014, doi: 10.1016/j.energy.2014.05.057. [172] X. Lin, Y. Liu, H. Song, and Y. Liu, “System design for 700 °C power plants: Integration scheme and performance evaluation,” Energy, vol. 267, 2023, doi: 10.1016/j.energy.2022.126453. [173] I. Opriș and V. E. Cenușă, “Parametric and heuristic optimization of multiple schemes with double-reheat ultra-supercritical steam power plants,” Energy, vol. 266, 2023, doi: 10.1016/j.energy.2022.126454. [174] J. García-Ferrero, R. P. Merchán, M. J. Santos, A. Medina, and A. Calvo Hernández, “Brayton technology for Concentrated Solar Power plants: Comparative analysis of central tower plants and parabolic dish farms,” Energy Convers. Manag., vol. 271, no. August, p. 116312, 2022, doi: 10.1016/j.enconman.2022.116312. [175] F. A. Al-sulaiman and M. Atif, “Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower,” Energy, vol. 82, pp. 61–71, 2015, doi: 10.1016/j.energy.2014.12.070. [176] R. V. Padilla, Y. C. Soo Too, R. Benito, and W. Stein, “Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers,” Appl. Energy, vol. 148, pp. 348–365, 2015, doi: 10.1016/j.apenergy.2015.03.090. [177] S. A. Bari, M. Fuad, K. F. Labib, M. Monjurul Ehsan, Y. Khan, and M. M. Hasan, BIBLIOGRAPHY 240 “Enhancement of thermal power plant performance through solar-assisted feed water heaters: An innovative repowering approach,” Energy Convers. Manag. X, vol. 22, no. November 2023, p. 100550, 2024, doi: 10.1016/j.ecmx.2024.100550. [178] H. Sumayli et al., “Integrated CSP-PV hybrid solar power plant for two cities in Saudi Arabia,” Case Stud. Therm. Eng., vol. 44, 2023, doi: 10.1016/j.csite.2023.102835. [179] M. I. Alam, M. M. Nuhash, A. Zihad, T. H. Nakib, and M. M. Ehsan, “Conventional and Emerging CSP Technologies and Design Modifications: Research Status and Recent Advancements,” Int. J. Thermofluids, vol. 20, no. June, p. 100406, 2023, doi: 10.1016/j.ijft.2023.100406. [180] A. R. Jensen et al., “Demonstration of a concentrated solar power and biomass plant for combined heat and power,” Energy Convers. Manag., vol. 271, 2022, doi: 10.1016/j.enconman.2022.116207. [181] S. Alotaibi, F. Alotaibi, and O. M. Ibrahim, “Solar-assisted steam power plant retrofitted with regenerative system using Parabolic Trough Solar Collectors,” Energy Reports, vol. 6, pp. 124–133, 2020, doi: 10.1016/j.egyr.2019.12.019. [182] S. Kabiri, M. H. Khoshgoftar Manesh, M. Yazdi, and M. Amidpour, “Dynamic and economical procedure for solar parallel feedwater heating repowering of steam power plants,” Appl. Therm. Eng., vol. 181, no. August, p. 115970, 2020, doi: 10.1016/j.applthermaleng.2020.115970. [183] M. Mehrpooya, M. Taromi, and B. Ghorbani, “Thermo-economic assessment and retrofitting of an existing electrical power plant with solar energy under different operational modes and part load conditions,” Energy Reports, vol. 5, pp. 1137–1150, 2019, doi: 10.1016/j.egyr.2019.07.014. [184] NREL, “NSRDB: National Solar Radiation Database.” https://nsrdb.nrel.gov/ (accessed Jun. 11, 2024). BIBLIOGRAPHY 241 [185] “A manual of spherical and practical astronomy by Chauvenet, William, 1820-1870. [from old catalog].” https://archive.org/details/amanualspherica06chaugoog (accessed Jun. 11, 2024). [186] N. Elamin and M. Fukushige, “Modeling and forecasting hourly electricity demand by SARIMAX with interactions,” Energy, vol. 165, 2018, doi: 10.1016/j.energy.2018.09.157. [187] S. J. Taylor and B. Letham, “Forecasting at Scale,” Am. Stat., vol. 72, no. 1, 2018, doi: 10.1080/00031305.2017.1380080. [188] O. Bamisile, C. J. Ejiyi, E. Osei-Mensah, I. A. Chikwendu, J. Li, and Q. Huang, “Long Term Prediction of Solar Radiation Using XGboost, LSTM, and Machine Learning Algorithms,” in 2022 4th Asia Energy and Electrical Engineering Symposium, AEEES 2022, 2022, doi: 10.1109/AEEES54426.2022.9759719. [189] S. Ghimire, R. C. Deo, N. Raj, and J. Mi, “Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms,” Appl. Energy, vol. 253, 2019, doi: 10.1016/j.apenergy.2019.113541. [190] M. Wagner, “SAM Webinars 2017: Modeling Molten Salt Power Tower Systems in SAM 2017.1.17,” SAM Webinars, pp. 1–41, 2017. [191] G. J. Kolb, R. Davenport, D. Gorman, R. Lumia, R. Thomas, and M. Donnelly, “Heliostat cost reduction,” Proc. Energy Sustain. Conf. 2007, no. June, pp. 1077–1084, 2007, doi: 10.1115/ES2007-36217. [192] Sargent & Lundy LLC Consulting Group, “Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts,” Chicago, Illinois, 2003. doi: NREL/SR-550-34440. [193] S. E. Trabelsi, R. Chargui, L. Qoaider, A. Liqreina, and A. A. Guizani, “Techno economic performance of concentrating solar power plants under the climatic conditions BIBLIOGRAPHY 242 of the southern region of Tunisia,” Energy Convers. Manag., vol. 119, 2016, doi: 10.1016/j.enconman.2016.04.033. [194] A. Modi, M. R. Kærn, J. G. Andreasen, and F. Haglind, “Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant,” Energy Convers. Manag., vol. 115, 2016, doi: 10.1016/j.enconman.2016.02.063. [195] “First EU Commercial Concentrating Solar Power Tower Opens in Spain.” https://web.archive.org/web/20070708162341/http://www.ens newswire.com/ens/mar2007/2007-03-30-02.asp. [196] Y. Yao, Y. Hu, and S. Gao, “Heliostat field layout methodology in central receiver systems based on efficiency-related distribution,” Sol. Energy, vol. 117, 2015, doi: 10.1016/j.solener.2015.04.029. [197] S. M. Besarati and D. Y. Goswami, “A computationally ef fi cient method for the design of the heliostat fi eld for solar power tower plant,” vol. 69, pp. 226–232, 2014, doi: 10.1016/j.renene.2014.03.043. [198] Z. Liao and A. Faghri, “Thermal analysis of a heat pipe solar central receiver for concentrated solar power tower,” Appl. Therm. Eng., vol. 102, pp. 952–960, 2016, doi: 10.1016/j.applthermaleng.2016.04.043. [199] A. Albarbar and A. Arar, “Performance Assessment and Improvement of Central Receivers Used for Solar Thermal Plants,” Energies, 2019, doi: 10.3390/en12163079. [200] K. E. N’Tsoukpoe et al., “Integrated design and construction of a micro-central tower power plant,” Energy Sustain. Dev., vol. 31, pp. 1–13, 2016, doi: 10.1016/j.esd.2015.11.004. [201] M. Chieruzzi, G. F. Cerritelli, A. Miliozzi, and J. M. Kenny, “Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage,” Nanoscale Res. Lett., vol. 8, no. 1, 2013, doi: 10.1186/1556-276X-8-448. BIBLIOGRAPHY 243 [202] J. E. Pacheco et al., “Results of molten salt panel and component experiments for solar central receivers: cold fill, freeze/thaw, thermal cycling and shock, and instrumentation,” Sandia Natl. Lab. Rep. No. SAND94-2525, 1995. [203] E. Shashi Menon and E. Shashi Menon, “Chapter Twelve – Meters and Valves,” in Transmission Pipeline Calculations and Simulations Manual, 2015. [204] J. A. Siefert, C. Libby, and J. Shingledecker, “Concentrating solar power (CSP) power cycle improvements through application of advanced materials,” AIP Conf. Proc., vol. 1734, 2016, doi: 10.1063/1.4949177. [205] B. P. D. B. (BPDB), “Daily Generation Archive,” 2024. https://misc.bpdb.gov.bd/daily generation-archive?page=1 (accessed Sep. 29, 2024). [206] F. Deng, G. Su, C. Liu, and Z. Wang, “Prediction of solar radiation resources in China using the LS-SVM algorithms,” in 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010, 2010, vol. 5, doi: 10.1109/ICCAE.2010.5451535. [207] B. Jamil and E. Bellos, “Development of empirical models for estimation of global solar radiation exergy in India,” J. Clean. Prod., vol. 207, 2019, doi: 10.1016/j.jclepro.2018.09.246. [208] E. S. Solano, P. Dehghanian, and C. M. Affonso, “Solar Radiation Forecasting Using Machine Learning and Ensemble Feature Selection,” Energies, vol. 15, no. 19, 2022, doi: 10.3390/en15197049. [209] Y. Feng, D. Gong, Q. Zhang, S. Jiang, L. Zhao, and N. Cui, “Evaluation of temperature based machine learning and empirical models for predicting daily global solar radiation,” Energy Convers. Manag., vol. 198, 2019, doi: 10.1016/j.enconman.2019.111780. [210] N. Dong, J. F. Chang, A. G. Wu, and Z. K. Gao, “A novel convolutional neural network BIBLIOGRAPHY 244 framework based solar irradiance prediction method,” Int. J. Electr. Power Energy Syst., vol. 114, 2020, doi: 10.1016/j.ijepes.2019.105411. [211] I. Arora, J. Gambhir, and T. Kaur, “Data Normalisation-Based Solar Irradiance Forecasting Using Artificial Neural Networks,” Arab. J. Sci. Eng., vol. 46, no. 2, 2021, doi: 10.1007/s13369-020-05140-y. [212] S. A. Haider, M. Sajid, H. Sajid, E. Uddin, and Y. Ayaz, “Deep learning and statistical methods for short- and long-term solar irradiance forecasting for Islamabad,” Renew. Energy, vol. 198, 2022, doi: 10.1016/j.renene.2022.07.136. | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/2434 | |
dc.description | Supervised By Prof. Dr. Mohammad Ahsan Habib, Co-Supervised By Prof. Dr. Mohammad Monjurul Ehsan, Department of Mechanical and Production Engineering(MPE), Islamic University of Technology (IUT) Board Bazar, Gazipur-1704, Bangladesh A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science (M.Sc.) in Mechanical Engineering, 2024 | en_US |
dc.description.abstract | Global climate change, driven by carbon emissions from fossil fuels, has accelerated the global transition toward renewable energy sources. A major challenge with renewable energy, particularly solar energy, is its intermittency, which makes accurate forecasting crucial for effective energy management. This thesis addresses two critical aspects of solar energy utilization forecasting Direct Normal Irradiance (DNI) to enhance the reliability of solar energy production and optimize the energy management of a solar-assisted regenerative Rankine cycle to maximize power generation using available solar resources. These two studies complement each other by focusing on both the prediction of solar energy availability and the efficient utilization of that energy in a thermal power plant. The first study explores advanced statistical, ensemble, and deep learning models for short-term DNI forecasting in Bangladesh. By analyzing geographical data and identifying optimal solar energy locations, the study applies models such as Facebook Prophet, SARIMAX, XGBoost, Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN), and Artificial Neural Networks (ANN). The performance of each model was evaluated using error metrics like R^2, MAE, MSE, and RMSE. Among machine learning models, XGBoost performed the best (MAE: 2.70, R^2: 0.93), while CNN was the top-performing deep learning model (MAE: 2.33, R^2: 0.991), demonstrating the effectiveness of these approaches in forecasting solar irradiance. Building on these predictions, the second study focuses on optimizing power generation in a solar-assisted regenerative Rankine cycle. The study examines various repowering configurations by closing one or more of the six feedwater heater (FWH) extractions and integrating solar energy from a Concentrated Solar Power (CSP) plant. Depending on DNI availability, the heat from the CSP plant is either used directly or stored in a Thermal Energy Storage (TES) system to be utilized during peak electricity demand. By simulating different DNI conditions, the study found that repowering could enhance the original cycle's 200 MW output to a maximum of 241.3 MW, depending on the closed extractions and thermal input from the solar system. However, this increase in power output was accompanied by a decrease in thermal efficiency from 43.63% to 39.45%, which is justified as additional power input is provided by solar energy. The study simulated energy management during the operation of the power plant, exploring various repowered cycle configurations to ensure the efficient utilization of solar energy. This energy, whether received directly or from the Thermal Energy Storage (TES) system, was optimized to meet the varying electricity demands. Together, these studies form a comprehensive approach to addressing the challenges of intermittent solar energy. Accurate DNI forecasting ensures reliable energy availability, while efficient management of solar energy within the Rankine cycle ensures optimal power generation. This combined approach not only supports Bangladesh’s commitment to Sustainable Development Goal 7 (SDG 7) but also offers broader insights into the integration of renewable energy in thermal power plants globally. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Mechanical and Production Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.subject | Machine learning; DNI forecasting; concentrated solar power; solar-assisted thermal power plant; solar feedwater heating; | en_US |
dc.title | A Machine Learning Based Modeling and Analysis of Solar-Assisted Thermal Power Plant in Bangladesh | en_US |
dc.type | Thesis | en_US |