| Login
dc.contributor.author | Nabil, Mahdi Hafiz | |
dc.date.accessioned | 2025-06-19T06:29:40Z | |
dc.date.available | 2025-06-19T06:29:40Z | |
dc.date.issued | 2024-11-30 | |
dc.identifier.citation | [1] V. S. Chakravarthy, R. K. Shah, and G. Venkatarathnam, “A review of refrigeration methods in the temperature range 4-300 K,” J Therm Sci Eng Appl, vol. 3, no. 2, Jul. 2011, doi: 10.1115/1.4003701/469408. [2] “Issue Information,” Int J Food Sci Technol, vol. 53, no. 11, 2018, doi: 10.1111/ijfs.13621. [3] M. Blakeney, Food loss and food waste: Causes and solutions. 2019. doi: 10.4337/9781788975391. [4] The Future of Cooling. OECD, 2018. doi: 10.1787/9789264301993-en. [5] G. Falchetta, E. De Cian, F. Pavanello, and I. S. Wing, “Inequalities in global residential cooling energy use to 2050,” Nature Communications , vol. 15, no. 1, 2024, doi: 10.1038/s41467-024-52028-8. [6] L. Hamelin, M. Wesnæs, H. Wenzel, and B. M. Petersen, “Environmental consequences of future biogas technologies based on separated slurry,” Environ Sci Technol, vol. 45, no. 13, pp. 5869–5877, Jul. 2011, doi: 10.1021/ES200273J/SUPPL_FILE/ES200273J_SI_001.PDF. [7] F. Polonara, L. J. M. Kuijpers, and R. A. Peixoto, “Potential impacts of the montreal protocol kigali amendment to the choice of refrigerant alternatives,” International Journal of Heat and Technology, vol. 35, no. Special Issue 1, pp. S1–S8, 2017, doi: 10.18280/ijht.35Sp0101. [8] K. Dağıdır and K. Bilen, “Usage of R513A as an alternative to R134a in a refrigeration system: An experimental investigation based on the Kigali amendment,” International Journal of Thermofluids, vol. 21, p. 100582, Feb. 2024, doi: 10.1016/J.IJFT.2024.100582. [9] V. S. Chakravarthy, R. K. Shah, and G. Venkatarathnam, “A review of refrigeration methods in the temperature range 4-300 K,” J Therm Sci Eng Appl, vol. 3, no. 2, Jul. 2011, doi: 10.1115/1.4003701/469408. Chapter 9: Bibliography 192 [10] S. A. Tassou, J. S. Lewis, Y. T. Ge, A. Hadawey, and I. Chaer, “A review of emerging technologies for food refrigeration applications,” Appl Therm Eng, vol. 30, no. 4, pp. 263– 276, Mar. 2010, doi: 10.1016/J.APPLTHERMALENG.2009.09.001. [11] A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán-Cervera, F. Molés, B. Peris, and G. Verdú, “Commercial refrigeration – An overview of current status,” International Journal of Refrigeration, vol. 57, pp. 186–196, Sep. 2015, doi: 10.1016/J.IJREFRIG.2015.04.013. [12] S. Yang, J. C. Ordonez, and J. V. C. Vargas, “Constructal vapor compression refrigeration (VCR) systems design,” Int J Heat Mass Transf, vol. 115, pp. 754–768, Dec. 2017, doi: 10.1016/J.IJHEATMASSTRANSFER.2017.07.079. [13] V. V. Chandra and M. R. Ahmed, “Experimental and computational studies on a steam jet refrigeration system with constant area and variable area ejectors,” Energy Convers Manag, vol. 79, pp. 377–386, Mar. 2014, doi: 10.1016/J.ENCONMAN.2013.12.035. [14] M. Kumar Rawat, H. Chattopadhyay, and S. Neogi, “A REVIEW ON DEVELOPMENTS OF THERMOELECTRIC REFRIGERATION AND AIR CONDITIONING SYSTEMS: A NOVEL POTENTIAL GREEN REFRIGERATION AND AIR CONDITIONING TECHNOLOGY,” 2013. [Online]. Available: www.ijetae.com [15] B. Dinesh, M. S. Manikanta, T. D. Kumar, N. A. Mezaal, K. V Osintsev, and T. B. Zhirgalova, “Review of magnetic refrigeration system as alternative to conventional refrigeration system,” IOP Conf Ser Earth Environ Sci, vol. 87, no. 3, p. 032024, Oct. 2017, doi: 10.1088/1755-1315/87/3/032024. [16] H. Geng, X. Cui, J. Weng, H. She, and W. Wang, “Review of experimental research on Joule–Thomson cryogenic refrigeration system,” Appl Therm Eng, vol. 157, p. 113640, Jul. 2019, doi: 10.1016/J.APPLTHERMALENG.2019.04.050. [17] C. Park, H. Lee, Y. Hwang, and R. Radermacher, “Recent advances in vapor compression cycle technologies,” International Journal of Refrigeration, vol. 60, pp. 118–134, Dec. 2015, doi: 10.1016/J.IJREFRIG.2015.08.005. [18] Y. Khan, S. M. Naqib-Ul-Islam, M. W. Faruque, and M. M. Ehsan, “Advanced Cascaded Recompression Absorption System Equipped with Ejector and Vapor-Injection Enhanced Chapter 9: Bibliography 193 Vapor Compression Refrigeration System: ANN based Multi-Objective Optimization,” Thermal Science and Engineering Progress, vol. 49, p. 102485, Mar. 2024, doi: 10.1016/J.TSEP.2024.102485. [19] M. H. Nabil, Y. Khan, M. W. Faruque, and M. M. Ehsan, “Thermo-Economic Assessment of Advanced Triple Cascade Refrigeration System Incorporating a Flash Tank and Suction Line Heat Exchanger,” Energy Convers Manag, vol. 295, p. 117630, 2023, doi: 10.1016/j.enconman.2023.117630. [20] N. Johnson, J. Baltrusaitis, and W. L. Luyben, “Design and control of a cryogenic multi stage compression refrigeration process,” Chemical Engineering Research and Design, vol. 121, pp. 360–367, May 2017, doi: 10.1016/J.CHERD.2017.03.018. [21] Y. Khan, M. W. Faruque, M. H. Nabil, and M. M. Ehsan, “Ejector and Vapor Injection Enhanced Novel Compression-Absorption Cascade Refrigeration Systems: A Thermodynamic Parametric and Refrigerant Analysis,” Energy Convers Manag, vol. 289, p. 117190, Aug. 2023, doi: 10.1016/j.enconman.2023.117190. [22] L. Garousi Farshi, S. M. Seyed Mahmoudi, and M. A. Rosen, “Analysis of crystallization risk in double effect absorption refrigeration systems,” Appl Therm Eng, vol. 31, no. 10, pp. 1712–1717, Jul. 2011, doi: 10.1016/J.APPLTHERMALENG.2011.02.013. [23] S. Salehi, M. Yari, S. M. S. Mahmoudi, and L. G. Farshi, “Investigation of crystallization risk in different types of absorption LiBr/H2O heat transformers,” Thermal Science and Engineering Progress, vol. 10, pp. 48–58, May 2019, doi: 10.1016/j.tsep.2019.01.013. [24] A. Mota-Babiloni et al., “Ultralow-temperature refrigeration systems: Configurations and refrigerants to reduce the environmental impact,” International Journal of Refrigeration, vol. 111, pp. 147–158, Mar. 2020, doi: 10.1016/J.IJREFRIG.2019.11.016. [25] M. Z. Saeed, L. Contiero, S. Blust, Y. Allouche, A. Hafner, and T. M. Eikevik, “Ultra Low-Temperature Refrigeration Systems: A Review and Performance Comparison of Refrigerants and Configurations,” Energies 2023, Vol. 16, Page 7274, vol. 16, no. 21, p. 7274, Oct. 2023, doi: 10.3390/EN16217274. Chapter 9: Bibliography 194 [26] M. W. Faruque, Y. Khan, M. H. Nabil, and M. M. Ehsan, “Parametric analysis and optimization of a novel cascade compression-absorption refrigeration system integrated with a flash tank and a reheater,” Results in Engineering, vol. 17, 2023, doi: 10.1016/j.rineng.2023.101008. [27] C. M. Udroiu, A. Mota-Babiloni, C. Espinós-Estévez, and J. Navarro-Esbrí, “Energy Efficient Technologies for Ultra-Low Temperature Refrigeration,” pp. 309–322, 2022, doi: 10.1007/978-981-16-9101-0_22. [28] W. J. Mulroy, P. A. Domanski, and D. A. Didion, “Glide matching with binary and ternary zeotropic refrigerant mixtures Part 1. An experimental study,” International Journal of Refrigeration, vol. 17, no. 4, pp. 220–225, Jan. 1994, doi: 10.1016/0140- 7007(94)90037-X. [29] A. Greco, C. Aprea, and A. Maiorino, “Transcritical Carbon Dioxide Refrigeration as an Alternative to Subcritical Plants: An Experimental Study,” https://services.igi global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-8398-3.ch008, pp. 295– 359, Jan. 1AD, doi: 10.4018/978-1-4666-8398-3.CH008. [30] B. A. Qureshi and S. M. Zubair, “The effect of refrigerant combinations on performance of a vapor compression refrigeration system with dedicated mechanical sub-cooling,” International Journal of Refrigeration, vol. 35, no. 1, pp. 47–57, Jan. 2012, doi: 10.1016/J.IJREFRIG.2011.09.009. [31] J. Schoenfield, Y. Hwang, and R. Radermacher, “CO2 transcritical vapor compression cycle with thermoelectric subcooler,” HVAC&R Res, vol. 18, no. 3, pp. 297–311, May 2012, doi: 10.1080/10789669.2012.625348. [32] D. Li and E. A. Groll, “Transcritical CO2 refrigeration cycle with ejector-expansion device,” International Journal of Refrigeration, vol. 28, no. 5, pp. 766–773, Aug. 2005, doi: 10.1016/J.IJREFRIG.2004.10.008. [33] G. Y. Ma and H. X. Zhao, “Experimental study of a heat pump system with flash-tank coupled with scroll compressor,” Energy Build, vol. 40, no. 5, pp. 697–701, Jan. 2008, doi: 10.1016/J.ENBUILD.2007.05.003. Chapter 9: Bibliography 195 [34] A. Arora and S. C. Kaushik, “Energy and exergy analyses of a two-stage vapour compression refrigeration system,” Int J Energy Res, vol. 34, no. 10, pp. 907–923, Aug. 2010, doi: 10.1002/er.1594. [35] M. W. Faruque, M. R. Uddin, S. Salehin, and M. M. Ehsan, “A Comprehensive Thermodynamic Assessment of Cascade Refrigeration System Utilizing Low GWP Hydrocarbon Refrigerants,” International Journal of Thermofluids, vol. 15, p. 100177, Aug. 2022, doi: 10.1016/j.ijft.2022.100177. [36] Y. Khan, M. W. Faruque, M. H. Nabil, and M. M. Ehsan, “Ejector and Vapor Injection Enhanced Novel Compression-Absorption Cascade Refrigeration Systems: A Thermodynamic Parametric and Refrigerant Analysis,” Energy Convers Manag, vol. 289, p. 117190, Aug. 2023, doi: 10.1016/j.enconman.2023.117190. [37] T. S. Lee, C. H. Liu, and T. W. Chen, “Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems,” International Journal of Refrigeration, vol. 29, no. 7, pp. 1100–1108, Nov. 2006, doi: 10.1016/J.IJREFRIG.2006.03.003. [38] M. Pan, H. Zhao, D. Liang, Y. Zhu, Y. Liang, and G. Bao, “A Review of the Cascade Refrigeration System,” Energies (Basel), vol. 13, no. 9, p. 2254, May 2020, doi: 10.3390/en13092254. [39] L. Kairouani and E. Nehdi, “Cooling performance and energy saving of a compression– absorption refrigeration system assisted by geothermal energy,” Appl Therm Eng, vol. 26, no. 2–3, pp. 288–294, Feb. 2006, doi: 10.1016/j.applthermaleng.2005.05.001. [40] Z. Sun and Y. Wang, “Comprehensive performance analysis of cascade refrigeration system with two-stage compression for industrial refrigeration,” Case Studies in Thermal Engineering, vol. 39, p. 102400, Nov. 2022, doi: 10.1016/j.csite.2022.102400. [41] M. Walid Faruque, M. Hafiz Nabil, M. Raihan Uddin, M. Monjurul Ehsan, and S. Salehin, “Thermodynamic assessment of a triple cascade refrigeration system utilizing hydrocarbon refrigerants for ultra-low temperature applications,” Energy Conversion and Management: X, vol. 14, no. January, p. 100207, 2022, doi: 10.1016/j.ecmx.2022.100207. Chapter 9: Bibliography 196 [42] Z. Sun, Q. Wang, B. Dai, M. Wang, and Z. Xie, “Options of low Global Warming Potential refrigerant group for a three-stage cascade refrigeration system,” International Journal of Refrigeration, vol. 100, pp. 471–483, Apr. 2019, doi: 10.1016/j.ijrefrig.2018.12.019. [43] M. Sivakumar and P. Somasundaram, “Exergy and energy analysis of three stage auto refrigerating cascade system using Zeotropic mixture for sustainable development,” Energy Convers Manag, vol. 84, pp. 589–596, Aug. 2014, doi: 10.1016/j.enconman.2014.04.076. [44] Y. Qin, N. Li, H. Zhang, and B. Liu, “Energy and exergy performance evaluation of a three-stage auto-cascade refrigeration system using low-GWP alternative refrigerants,” International Journal of Refrigeration, vol. 126, pp. 66–75, Jun. 2021, doi: 10.1016/j.ijrefrig.2021.01.028. [45] Y. He, R. Li, G. Chen, and Y. Wang, “A potential auto-cascade absorption refrigeration system for pre-cooling of LNG liquefaction,” J Nat Gas Sci Eng, vol. 24, pp. 425–430, 2015, doi: 10.1016/j.jngse.2015.03.035. [46] K. Du, S. Zhang, W. Xu, and X. Niu, “A study on the cycle characteristics of an auto cascade refrigeration system,” Exp Therm Fluid Sci, vol. 33, no. 2, pp. 240–245, 2009, doi: 10.1016/j.expthermflusci.2008.08.006. [47] Y. He and G. Chen, “Equivalent Cycle and Optimization of Auto-Cascade Absorption Refrigeration Systems,” Journal of Thermal Science, vol. 29, no. 4, pp. 1053–1062, 2020, doi: 10.1007/s11630-020-1333-z. [48] G. Yan, H. Hu, and J. Yu, “Performance evaluation on an internal auto-cascade refrigeration cycle with mixture refrigerant R290/R600a,” Appl Therm Eng, vol. 75, pp. 994–1000, Jan. 2015, doi: 10.1016/J.APPLTHERMALENG.2014.10.063. [49] M. Walid Faruque, Y. Khan, M. Hafiz Nabil, M. Monjurul Ehsan, and A. Karim, “Thermal Performance Evaluation of a Novel Ejector-Injection Cascade Refrigeration System,” Thermal Science and Engineering Progress, vol. 39, no. January, p. 101745, 2023, doi: 10.1016/j.tsep.2023.101745. Chapter 9: Bibliography 197 [50] M. G. Gado, S. Ookawara, S. Nada, and I. I. El-Sharkawy, “Hybrid sorption-vapor compression cooling systems: A comprehensive overview,” Renewable and Sustainable Energy Reviews, vol. 143, p. 110912, Jun. 2021, doi: 10.1016/J.RSER.2021.110912. [51] X. She et al., “Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review,” Appl Energy, vol. 232, pp. 157–186, Dec. 2018, doi: 10.1016/J.APENERGY.2018.09.067. [52] ASHRAE, “REFRIGERATION SI Edition,” Eggs and Egg Products, p. 34.1, 2014. [53] A. Mota-Babiloni et al., “Ultralow-temperature refrigeration systems: Configurations and refrigerants to reduce the environmental impact,” International Journal of Refrigeration, vol. 111, pp. 147–158, Mar. 2020, doi: 10.1016/J.IJREFRIG.2019.11.016. [54] C. M. Udroiu, A. Mota-Babiloni, C. Espinós-Estévez, and J. Navarro-Esbrí, “Energy Efficient Technologies for Ultra-Low Temperature Refrigeration,” pp. 309–322, 2022, doi: 10.1007/978-981-16-9101-0_22. [55] N. Johnson, J. Baltrusaitis, and W. L. Luyben, “Design and control of a cryogenic multi stage compression refrigeration process,” Chemical Engineering Research and Design, vol. 121, pp. 360–367, May 2017, doi: 10.1016/J.CHERD.2017.03.018. [56] N. Johnson, J. Baltrusaitis, and W. L. Luyben, “Design and control of a cryogenic multi stage compression refrigeration process,” Chemical Engineering Research and Design, vol. 121, pp. 360–367, 2017, doi: 10.1016/j.cherd.2017.03.018. [57] B. Kílíc, “Exergy analysis of vapor compression refrigeration cycle with two-stage and intercooler,” Heat and Mass Transfer/Waerme- und Stoffuebertragung, vol. 48, no. 7, pp. 1207–1217, Jul. 2012, doi: 10.1007/S00231-012-0971-4/FIGURES/16. [58] A. A. Kornhauser, “Purdue e-Pubs The Use of an Ejector as a Refrigerant Expander”, Accessed: Aug. 18, 2022. [Online]. Available: http://docs.lib.purdue.edu/iracc/82 [59] Y. Khan, M. W. Faruque, M. H. Nabil, and M. M. Ehsan, “Ejector and Vapor Injection Enhanced Novel Compression-Absorption Cascade Refrigeration Systems: A Thermodynamic Parametric and Refrigerant Analysis,” Energy Convers Manag, vol. 289, p. 117190, Aug. 2023, doi: 10.1016/J.ENCONMAN.2023.117190. Chapter 9: Bibliography 198 [60] C. Park, H. Lee, Y. Hwang, and R. Radermacher, “Recent advances in vapor compression cycle technologies,” International Journal of Refrigeration, vol. 60, pp. 118–134, 2015, doi: 10.1016/j.ijrefrig.2015.08.005. [61] D. M. Nasution, M. Idris, N. A. Pambudi, and Weriono, “Room air conditioning performance using liquid-suction heat exchanger retrofitted with R290,” Case Studies in Thermal Engineering, vol. 13, 2019, doi: 10.1016/j.csite.2018.11.001. [62] P. A. Domanski, D. A. Didion, and J. P. Doyle, “Evaluation of suction-line/liquid-line heat exchange in the refrigeration cycle,” International Journal of Refrigeration, vol. 17, no. 7, pp. 487–493, 1994, doi: 10.1016/0140-7007(94)90010-8. [63] R. Llopis, C. Sanz-Kock, R. Cabello, D. Sánchez, and E. Torrella, “Experimental evaluation of an internal heat exchanger in a CO2 subcritical refrigeration cycle with gas cooler,” Appl Therm Eng, vol. 80, pp. 31–41, Apr. 2015, doi: 10.1016/J.APPLTHERMALENG.2015.01.040. [64] F. Z. Zhang, P. X. Jiang, Y. S. Lin, and Y. W. Zhang, “Efficiencies of subcritical and transcritical CO2 inverse cycles with and without an internal heat exchanger,” Appl Therm Eng, vol. 31, no. 4, pp. 432–438, Mar. 2011, doi: 10.1016/J.APPLTHERMALENG.2010.09.018. [65] R. Llopis, C. Sanz-Kock, R. Cabello, D. Sánchez, L. Nebot-Andrés, and J. Catalán-Gil, “Effects caused by the internal heat exchanger at the low temperature cycle in a cascade refrigeration plant,” Appl Therm Eng, vol. 103, pp. 1077–1086, Jun. 2016, doi: 10.1016/J.APPLTHERMALENG.2016.04.075. [66] E. Torrella, D. Sánchez, R. Llopis, and R. Cabello, “Energetic evaluation of an internal heat exchanger in a CO2 transcritical refrigeration plant using experimental data,” International Journal of Refrigeration, vol. 34, no. 1, pp. 40–49, Jan. 2011, doi: 10.1016/J.IJREFRIG.2010.07.006. [67] H. Lee, Y. Hwang, R. Radermacher, and H. H. Chun, “Potential benefits of saturation cycle with two-phase refrigerant injection,” Appl Therm Eng, vol. 56, no. 1–2, pp. 27–37, Jul. 2013, doi: 10.1016/J.APPLTHERMALENG.2013.03.030. Chapter 9: Bibliography 199 [68] X. Xu, Y. Hwang, and R. Radermacher, “Refrigerant injection for heat pumping/air conditioning systems: Literature review and challenges discussions,” International Journal of Refrigeration, vol. 34, no. 2, pp. 402–415, Mar. 2011, doi: 10.1016/J.IJREFRIG.2010.09.015. [69] J. V. H. D’Angelo, V. Aute, and R. Radermacher, “Performance evaluation of a vapor injection refrigeration system using mixture refrigerant R290/R600a,” International Journal of Refrigeration, vol. 65, pp. 194–208, May 2016, doi: 10.1016/J.IJREFRIG.2016.01.019. [70] X. Wang, Y. Hwang, and R. Radermacher, “Two-stage heat pump system with vapor injected scroll compressor using R410A as a refrigerant,” International Journal of Refrigeration, vol. 32, no. 6, pp. 1442–1451, Sep. 2009, doi: 10.1016/j.ijrefrig.2009.03.004. [71] J. Navarro-Esbrí, F. Molés, and Á. Barragán-Cervera, “Experimental analysis of the internal heat exchanger influence on a vapour compression system performance working with R1234yf as a drop-in replacement for R134a,” Appl Therm Eng, vol. 59, no. 1–2, pp. 153–161, 2013, doi: 10.1016/j.applthermaleng.2013.05.028. [72] M. W. Faruque, Y. Khan, M. H. Nabil, and M. M. Ehsan, “Parametric analysis and optimization of a novel cascade compression-absorption refrigeration system integrated with a flash tank and a reheater,” Results in Engineering, vol. 17, p. 101008, Mar. 2023, doi: 10.1016/J.RINENG.2023.101008. [73] G. Y. Ma and H. X. Zhao, “Experimental study of a heat pump system with flash-tank coupled with scroll compressor,” Energy Build, vol. 40, no. 5, pp. 697–701, Jan. 2008, doi: 10.1016/J.ENBUILD.2007.05.003. [74] D. M. Nasution, M. Idris, N. A. Pambudi, and Weriono, “Room air conditioning performance using liquid-suction heat exchanger retrofitted with R290,” Case Studies in Thermal Engineering, vol. 13, Mar. 2019, doi: 10.1016/J.CSITE.2018.11.001. [75] A. Mota-Babiloni, J. Navarro-Esbrí, V. Pascual-Miralles, Á. Barragán-Cervera, and A. Maiorino, “Experimental influence of an internal heat exchanger (IHX) using R513A and Chapter 9: Bibliography 200 R134a in a vapor compression system,” Appl Therm Eng, vol. 147, pp. 482–491, Jan. 2019, doi: 10.1016/J.APPLTHERMALENG.2018.10.092. [76] J. Heo, M. W. Jeong, C. Baek, and Y. Kim, “Comparison of the heating performance of air-source heat pumps using various types of refrigerant injection,” International Journal of Refrigeration, vol. 34, no. 2, pp. 444–453, Mar. 2011, doi: 10.1016/J.IJREFRIG.2010.10.003. [77] X. Shuxue, M. Guoyuan, L. Qi, and L. Zhongliang, “Experiment study of an enhanced vapor injection refrigeration/heat pump system using R32,” International Journal of Thermal Sciences, vol. 68, pp. 103–109, Jun. 2013, doi: 10.1016/J.IJTHERMALSCI.2012.12.014. [78] M. Elakhdar, B. M. Tashtoush, E. Nehdi, and L. Kairouani, “Thermodynamic analysis of a novel Ejector Enhanced Vapor Compression Refrigeration (EEVCR) cycle,” Energy, vol. 163, pp. 1217–1230, Nov. 2018, doi: 10.1016/J.ENERGY.2018.09.050. [79] D. Yang, Y. Li, J. Xie, and J. Wang, “Exergy destruction characteristics of a transcritical carbon dioxide two-stage compression/ejector refrigeration system for low-temperature cold storage,” Energy Reports, vol. 8, pp. 8546–8562, Nov. 2022, doi: 10.1016/J.EGYR.2022.06.066. [80] X. Cao, X. Liang, L. Shao, and C. Zhang, “Performance analysis of an ejector-assisted two-stage evaporation single-stage vapor-compression cycle,” Appl Therm Eng, vol. 205, p. 118005, Mar. 2022, doi: 10.1016/J.APPLTHERMALENG.2021.118005. [81] X. Wang, J. Yu, and M. Xing, “Performance analysis of a new ejector enhanced vapor injection heat pump cycle,” Energy Convers Manag, vol. 100, pp. 242–248, Aug. 2015, doi: 10.1016/J.ENCONMAN.2015.05.017. [82] M. Q. Zeng, Q. Y. Zheng, X. L. Zhang, F. Y. Mo, and X. R. Zhang, “Thermodynamic analysis of a novel multi-target temperature transcritical CO2 ejector-expansion refrigeration cycle with vapor-injection,” Energy, vol. 259, p. 125016, Nov. 2022, doi: 10.1016/J.ENERGY.2022.125016. Chapter 9: Bibliography 201 [83] M. Walid Faruque, Y. Khan, M. Hafiz Nabil, M. Monjurul Ehsan, and A. Karim, “Thermal Performance Evaluation of a Novel Ejector-Injection Cascade Refrigeration System,” Thermal Science and Engineering Progress, p. 101745, Feb. 2023, doi: 10.1016/J.TSEP.2023.101745. [84] P. Gullo, “Impact and quantification of various individual thermodynamic improvements for transcritical R744 supermarket refrigeration systems based on advanced exergy analysis,” Energy Convers Manag, vol. 229, p. 113684, Feb. 2021, doi: 10.1016/J.ENCONMAN.2020.113684. [85] Z. Sun et al., “Performance assessment of CO2 supermarket refrigeration system in different climate zones of China,” Energy Convers Manag, vol. 208, p. 112572, Mar. 2020, doi: 10.1016/J.ENCONMAN.2020.112572. [86] M. Ruhemann, “Low temperature refrigeration,” Cryogenics (Guildf), vol. 1, no. 4, pp. 193–198, Jun. 1961, doi: 10.1016/S0011-2275(61)80001-5. [87] Nasruddin, S. Sholahudin, N. Giannetti, and Arnas, “Optimization of a cascade refrigeration system using refrigerant C3H8 in high temperature circuits (HTC) and a mixture of C2H6/CO2 in low temperature circuits (LTC),” Appl Therm Eng, vol. 104, pp. 96–103, Jul. 2016, doi: 10.1016/J.APPLTHERMALENG.2016.05.059. [88] A. Kilicarslan and M. Hosoz, “Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples,” Energy Convers Manag, vol. 51, no. 12, pp. 2947–2954, Dec. 2010, doi: 10.1016/J.ENCONMAN.2010.06.037. [89] R. Selbaş, Ö. Kizilkan, and A. Şencan, “Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle,” Energy, vol. 31, no. 12, pp. 2108– 2128, Sep. 2006, doi: 10.1016/J.ENERGY.2005.10.015. [90] M. El-Morsi, “Energy and exergy analysis of LPG (liquefied petroleum gas) as a drop in replacement for R134a in domestic refrigerators,” Energy, vol. 86, pp. 344–353, Jun. 2015, doi: 10.1016/J.ENERGY.2015.04.035. [91] R. Cabello, D. Sánchez, R. Llopis, J. Catalán, L. Nebot-Andrés, and E. Torrella, “Energy evaluation of R152a as drop in replacement for R134a in cascade refrigeration plants,” Chapter 9: Bibliography 202 Appl Therm Eng, vol. 110, pp. 972–984, Jan. 2017, doi: 10.1016/J.APPLTHERMALENG.2016.09.010. [92] Z. Sun, Q. Wang, Z. Xie, S. Liu, D. Su, and Q. Cui, “Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system,” Energy, vol. 170, pp. 1170–1180, Mar. 2019, doi: 10.1016/J.ENERGY.2018.12.055. [93] M. Walid Faruque, M. Hafiz Nabil, M. Raihan Uddin, M. Monjurul Ehsan, and S. Salehin, “Thermodynamic assessment of a triple cascade refrigeration system utilizing hydrocarbon refrigerants for ultra-low temperature applications,” Energy Conversion and Management: X, vol. 14, 2022, doi: 10.1016/j.ecmx.2022.100207. [94] M. Deymi-Dashtebayaz, A. Sulin, T. Ryabova, I. Sankina, M. Farahnak, and R. Nazeri, “Energy, exergoeconomic and environmental optimization of a cascade refrigeration system using different low GWP refrigerants,” J Environ Chem Eng, vol. 9, no. 6, p. 106473, Dec. 2021, doi: 10.1016/j.jece.2021.106473. [95] L. H. P. Massuchetto, R. B. C. do Nascimento, S. M. R. de Carvalho, H. V. de Araújo, and J. V. H. d’Angelo, “Thermodynamic performance evaluation of a cascade refrigeration system with mixed refrigerants: R744/R1270, R744/R717 and R744/RE170,” International Journal of Refrigeration, vol. 106, pp. 201–212, 2019, doi: 10.1016/j.ijrefrig.2019.07.005. [96] M. J. Jeon, “Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 1: Coefficient of Performance Characteristics,” Energies 2021, Vol. 14, Page 6003, vol. 14, no. 18, p. 6003, Sep. 2021, doi: 10.3390/EN14186003. [97] A. A. M. B. Issa, E. N. Pergantis, J. K. Brehm, E. A. Groll, and D. Ziviani, “Modeling of an Ultra-Low Temperature Refrigeration System for Independent Vaccines and Medical Supplies Storage,” International Refrigeration and Air Conditioning Conference, Jul. 2022, Accessed: May 21, 2023. [Online]. Available: https://docs.lib.purdue.edu/iracc/2424 Chapter 9: Bibliography 203 [98] C. M. Udroiu, A. Mota-Babiloni, and J. Navarro-Esbrí, “Advanced two-stage cascade configurations for energy-efficient –80 °C refrigeration,” Energy Convers Manag, vol. 267, p. 115907, Sep. 2022, doi: 10.1016/J.ENCONMAN.2022.115907. [99] Z. Sun and Y. Wang, “Comprehensive performance analysis of cascade refrigeration system with two-stage compression for industrial refrigeration,” Case Studies in Thermal Engineering, vol. 39, 2022, doi: 10.1016/j.csite.2022.102400. [100] R. and A.-C. Engineers. American Society of Heating and R. and A.-C. E. American Society of Heating, 2015 ASHRAE handbook : heating, ventilating, and air-conditioning applications, Inch - Pound Edition. [101] K. Du, S. Zhang, W. Xu, and X. Niu, “A study on the cycle characteristics of an auto cascade refrigeration system,” Exp Therm Fluid Sci, vol. 33, no. 2, pp. 240–245, Jan. 2009, doi: 10.1016/J.EXPTHERMFLUSCI.2008.08.006. [102] A. Mota-Babiloni et al., “Ultralow-temperature refrigeration systems: Configurations and refrigerants to reduce the environmental impact,” International Journal of Refrigeration, vol. 111, pp. 147–158, Mar. 2020, doi: 10.1016/j.ijrefrig.2019.11.016. [103] M. Pan, H. Zhao, D. Liang, Y. Zhu, Y. Liang, and G. Bao, “A Review of the Cascade Refrigeration System,” Energies 2020, Vol. 13, Page 2254, vol. 13, no. 9, p. 2254, May 2020, doi: 10.3390/EN13092254. [104] S. Agarwal, A. Arora, and B. B. Arora, “Energy and exergy analysis of vapor compression–triple effect absorption cascade refrigeration system,” Engineering Science and Technology, an International Journal, vol. 23, no. 3, pp. 625–641, Jun. 2020, doi: 10.1016/J.JESTCH.2019.08.001. [105] M. Walid Faruque, M. Hafiz Nabil, M. Raihan Uddin, M. Monjurul Ehsan, and S. Salehin, “Thermodynamic assessment of a triple cascade refrigeration system utilizing hydrocarbon refrigerants for ultra-low temperature applications,” Energy Conversion and Management: X, vol. 14, p. 100207, May 2022, doi: 10.1016/J.ECMX.2022.100207. [106] S. Khalilzadeh, A. Hossein Nezhad, and F. Sarhaddi, “Reducing the power consumption of cascade refrigeration cycle by a new integrated system using solar energy,” Energy Chapter 9: Bibliography 204 Convers Manag, vol. 200, p. 112083, Nov. 2019, doi: 10.1016/J.ENCONMAN.2019.112083. [107] Q. Wang et al., “Comparative analysis of thermodynamic performance of three-stage cascade refrigeration system assisted with internal heat exchanger,” 2020. [108] Z. Sun and Y. Wang, “Comprehensive performance analysis of cascade refrigeration system with two-stage compression for industrial refrigeration,” Case Studies in Thermal Engineering, vol. 39, p. 102400, Nov. 2022, doi: 10.1016/J.CSITE.2022.102400. [109] C.-M. Udroiu, A. Mota-Babiloni, P. Giménez-Prades, Á. Barragán-Cervera, and J. Navarro-Esbrí, “Two-stage cascade configurations based on ejectors for ultra-low temperature refrigeration with natural refrigerants,” International Journal of Thermofluids, vol. 17, p. 100287, Feb. 2023, doi: 10.1016/j.ijft.2023.100287. [110] “NIST Chemistry WebBook.” Accessed: Oct. 13, 2024. [Online]. Available: https://webbook.nist.gov/chemistry/ [111] Y. A. Cengel, “Thermodynamics : An Engineering Approach INTRODUCTION AND BASIC CONCEPTS,” vol. 8th Editio, pp. 1–59, 2015. [112] H. Ghaebi, T. Parikhani, H. Rostamzadeh, and B. Farhang, “Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles,” Energy, vol. 139, pp. 262– 276, 2017, doi: 10.1016/j.energy.2017.07.154. [113] M. J. Bejan, Adrian and Tsatsaronis, George and Moran, “Thermal design and optimization,” John Wiley & Sons, 1995. [114] H. Nami and A. Arabkoohsar, “Improving the power share of waste-driven CHP plants via parallelization with a small-scale Rankine cycle, a thermodynamic analysis,” Energy, vol. 171, pp. 27–36, 2019, doi: 10.1016/j.energy.2018.12.168. [115] A. A. Kornhauser, “The use of an ejector in a geothermal flash system,” Proceedings of the Intersociety Energy Conversion Engineering Conference, vol. 5, pp. 79–84, 1990, doi: 10.1109/iecec.1990.747930. Chapter 9: Bibliography 205 [116] H. Li, F. Cao, X. Bu, L. Wang, and X. Wang, “Performance characteristics of R1234yf ejector-expansion refrigeration cycle,” Appl Energy, vol. 121, pp. 96–103, May 2014, doi: 10.1016/J.APENERGY.2014.01.079. [117] S. Sanaye, M. Emadi, and A. Refahi, “Thermal and economic modeling and optimization of a novel combined ejector refrigeration cycle,” International Journal of Refrigeration, vol. 98, pp. 480–493, Feb. 2019, doi: 10.1016/j.ijrefrig.2018.11.007. [118] V. K. Patel, B. D. Raja, P. Prajapati, L. Parmar, and H. Jouhara, “An investigation to identify the performance of cascade refrigeration system by adopting high-temperature circuit refrigerant R1233zd(E) over R161,” International Journal of Thermofluids, vol. 17, Feb. 2023, doi: 10.1016/j.ijft.2023.100297. [119] V. K. Patel, B. D. Raja, P. Prajapati, L. Parmar, and H. Jouhara, “An investigation to identify the performance of cascade refrigeration system by adopting high-temperature circuit refrigerant R1233zd(E) over R161,” International Journal of Thermofluids, vol. 17, 2023, doi: 10.1016/j.ijft.2023.100297. [120] G. Poongavanam, V. Sivalingam, R. Prabakaran, M. Salman, and S. C. Kim, “Selection of the best refrigerant for replacing R134a in automobile air conditioning system using different MCDM methods: A comparative study,” Case Studies in Thermal Engineering, vol. 27, p. 101344, Oct. 2021, doi: 10.1016/j.csite.2021.101344. [121] I. Bell, S. Quoillin, J. Wronski, and V. Lemort, “Coolprop: An open-source referencequality thermophysical property library,” submitted abstract to ASME- …, no. 1, p. 110006, 2013, [Online]. Available: http://coolprop.sourceforge.net/_static/poster.pdf%5Cnhttp://orbit.dtu.dk/ws/files/5993439 2/COOLPROP.pdf [122] I. H. Bell, J. Wronski, S. Quoilin, and V. Lemort, “Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop,” Ind Eng Chem Res, vol. 53, no. 6, pp. 2498–2508, 2014, doi: 10.1021/ie4033999. Chapter 9: Bibliography 206 [123] A. Mota-Babiloni, J. Navarro-Esbrí, V. Pascual-Miralles, Á. Barragán-Cervera, and A. Maiorino, “Experimental influence of an internal heat exchanger (IHX) using R513A and R134a in a vapor compression system,” Appl Therm Eng, vol. 147, pp. 482–491, Jan. 2019, doi: 10.1016/j.applthermaleng.2018.10.092. [124] G.-Y. Ma and H.-X. Zhao, “Experimental study of a heat pump system with flash-tank coupled with scroll compressor,” Energy Build, vol. 40, no. 5, pp. 697–701, Jan. 2008, doi: 10.1016/j.enbuild.2007.05.003. [125] H. Qi, F. Liu, and J. Yu, “Performance analysis of a novel hybrid vapor injection cycle with subcooler and flash tank for air-source heat pumps,” International Journal of Refrigeration, vol. 74, pp. 540–549, 2017, doi: 10.1016/j.ijrefrig.2016.11.024. [126] S. Elbel and P. Hrnjak, “Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation,” International Journal of Refrigeration, vol. 31, no. 3, pp. 411–422, May 2008, doi: 10.1016/J.IJREFRIG.2007.07.013. [127] G. Besagni, R. Mereu, and F. Inzoli, “Ejector refrigeration: A comprehensive review,” Jan. 01, 2016, Elsevier Ltd. doi: 10.1016/j.rser.2015.08.059. [128] M. H. Nabil, Y. Khan, M. W. Faruque, and M. M. Ehsan, “Thermo-Economic Assessment of Advanced Triple Cascade Refrigeration System Incorporating a Flash Tank and Suction Line Heat Exchanger,” Energy Convers Manag, vol. 295, p. 117630, Nov. 2023, doi: 10.1016/j.enconman.2023.117630 | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/2435 | |
dc.description | Supervised by Prof. Dr. Mohammad Monjurul Ehsan, Department of Mechanical and Production Engineering(MPE), Islamic University of Technology (IUT) Board Bazar, Gazipur-1704, Bangladesh A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science (M.Sc.) in Mechanical Engineering, 2024 | en_US |
dc.description.abstract | The rising global demand for refrigeration, driven by industrial, medical, and technological needs, necessitates advancing highly performing and environment-friendly cooling technologies. This study explores advanced refrigeration techniques to address the limitations of conventional vapor-compression refrigeration (VCR) systems, particularly in ultra-low temperature (ULT) applications. While widely used, conventional VCR systems suffer from significant performance degradation at temperatures lower than -40°C, primarily due to excessive compression ratios and high discharge temperatures. To overcome these challenges, cascade refrigeration systems (CRS) have emerged as a promising alternative, enabling ultra-low temperatures (ULT) by combining multiple refrigeration cycles. This research presents the modelling and analysis of two novel advanced three-stage cascade refrigeration systems: an advanced triple cascade refrigeration system (ATCRS) and an ejector-enhanced advanced triple cascade refrigeration system (EATCRS). The ATCRS integrates a suction-line heat exchanger (SLHX) and flash tank (FLT) to enhance thermodynamic performance, achieving an 8.57% improvement in coefficient of performance (COP) and a 7.24% increase in second law efficiency over traditional cascade systems. The EATCRS incorporates an ejector system in the medium-temperature circuit (MTC), further improving system efficiency. Compared to the ATCRS, the EATCRS demonstrates a 32.82% increase in COP and a 27.34% boost in exergy efficiency, significantly outperforming conventional systems as well as the ATCRS. Moreover, the economic analysis indicates that despite an initial 9.78% increase in annual costs due to the ejector integration, the EATCRS achieves a 25.73% reduction in costs compared to other advanced systems. This study fills a critical gap in the current research by providing a comprehensive analysis of three-stage cascade refrigeration systems equipped with advanced VCR modifications along with multi-objective optimization of both systems using ANN-based genetic algorithm identifying optimal operating points ensuring the maximum possible performance by keeping the system cost within acceptable limit. The results highlight the potential of these systems to accommodate the increasing demand for ultra-low temperature refrigeration while addressing critical environmental and economic concerns. This work lays the foundation for future research aimed at optimizing refrigeration systems to ensure energy sustainability and environmental protection. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Mechanical and Production Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.subject | Cascade Refrigeration, Ultra-low Temperature Refrigeration, Thermo-economic Analysis, Optimization, Machine Learning. | en_US |
dc.title | Thermo-economic Analysis and Multi-Objective Optimization of Advanced Three-Stage Cascaded Refrigeration Technologies | en_US |
dc.type | Thesis | en_US |