dc.identifier.citation |
[1] K. Amsalu and S. Palani, “A review on photonics and its applications,” Mater Today Proc, vol. 33, pp. 3372–3377, 2020, doi: https://doi.org/10.1016/j.matpr.2020.05.184. [2] M. Girtan, “Is photonics the new electronics?,” Materials Today, vol. 17, pp. 100–101, Sep. 2014, doi: 10.1016/j.mattod.2014.03.003. [3] M. S. Moreolo, L. Nadal, J. M. Fabrega, and J. Vílchez, “Photonic and Quantum Communication Technologies for Optical Networks Evolution,” in 2023 23rd International Conference on Transparent Optical Networks (ICTON), 2023, pp. 1–4. doi: 10.1109/ICTON59386.2023.10207227. [4] M. S. Moreolo et al., “Programmable VCSEL-based photonic system architecture for future agile Tb/s metro networks,” Journal of Optical Communications and Networking, vol. 13, no. 2, pp. A187–A199, 2021, doi: 10.1364/JOCN.411964. [5] Y. Shi et al., “Silicon photonics for high-capacity data communications,” Photonics Res, vol. 10, no. 9, pp. A106–A134, 2022, doi: 10.1364/PRJ.456772. [6] J.-H. Kim, S. Aghaeimeibodi, J. Carolan, D. Englund, and E. Waks, “Hybrid integration methods for on-chip quantum photonics,” Optica, vol. 7, no. 4, pp. 291–308, 2020, doi: 10.1364/OPTICA.384118. [7] L. Feng et al., “Silicon photonic devices for scalable quantum information applications,” Photonics Res, vol. 10, no. 10, pp. A135–A153, 2022, doi: 10.1364/PRJ.464808. [8] T. Heindel, J.-H. Kim, N. Gregersen, A. Rastelli, and S. Reitzenstein, “Quantum dots for photonic quantum information technology,” Adv Opt Photonics, vol. 15, no. 3, pp. 613–738, 2023, doi: 10.1364/AOP.490091. [9] P. S, A. Sivasangari, P. Ajitha, S. Lalithakumari, A. Sridevi, and S. K. Danasegaran, “Design and performance analysis of smart photonic sensors for industrial applications,” Current Applied Physics, vol. 39, pp. 183–189, 2022, doi: https://doi.org/10.1016/j.cap.2022.04.006. [10] N. L. Kazanskiy, S. N. Khonina, and M. A. Butt, “Plasmonic sensors based on Metal-insulator metal waveguides for refractive index sensing applications: A brief review,” Physica E Low Dimens Syst Nanostruct, vol. 117, p. 113798, 2020, doi: https://doi.org/10.1016/j.physe.2019.113798. [11] A. Mendez, “Photonic Sensing Technology in the Energy Sector,” in Latin America Optics and Photonics Conference, in OSA Technical Digest (online). Sao Sebastiao: Optica Publishing Group, 2012, p. LS3B.1. doi: 10.1364/LAOP.2012.LS3B.1. [12] S. Khani and M. Hayati, “Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-09213-w. [13] Vikas and P. Saccomandi, “Antimonene-Coated Uniform-Waist Tapered Fiber Optic Surface Plasmon Resonance Biosensor for the Detection of Cancerous Cells: Design and Optimization,” ACS Omega, vol. 8, no. 5, pp. 4627–4638, Feb. 2023, doi: 10.1021/acsomega.2c06037. [14] J. E. Anderson and J. E. Jackson, “Theory and application of pulsed laser welding,” Weld J, vol. 44, pp. 1018–1026, Jan. 1965. [15] T. Maiman, “Stimulated optical radiation in ruby masers,” Nature, vol. 187, pp. 493–494, Aug. 1960, doi: 10.1038/187493a0. 62 [16] G. Klauminzer, “Twenty years of commercial lasers—a capsule history,” Laser Focus/Electro optics, vol. 20, pp. 54–79, Dec. 1984. [17] N. Taylor and N. Bloembergen, “Laser: The Inventor, the Nobel Laureate, and the Thirty-Year Patent War,” Physics Today - PHYS TODAY, vol. 12, Sep. 2001, doi: 10.1063/1.1420516. [18] A. Bernatskyi and V. Khaskin, “The history of the creation of lasers and analysis of the impact of their application in the material processing on the development of certain industries,” History of science and technology, vol. 11, pp. 125–149, Jun. 2021, doi: 10.32703/2415-7422-2021-11-1-125- 149. [19] K. C. Kao, G. A. Hockham, and I. E. E. Synopsis, “Dielectric-fibre surface waveguides for optical frequencies "I Jo( M i) for H Om modes u 2 K 0 (w 2 ),” 1966. [20] H. H. HOPKINS and N. S. KAPANY, “A Flexible Fibrescope, using Static Scanning,” Nature, vol. 173, no. 4392, pp. 39–41, 1954, doi: 10.1038/173039b0. [21] K. P. Singh, “In memory of Narinder Singh Kapany,” Nat Photonics, vol. 15, no. 6, pp. 403–404, 2021, doi: 10.1038/s41566-021-00812-z. [22] N. S. KAPANY, “High-Resolution Fibre Optics Using Sub-Micron Multiple Fibres,” Nature, vol. 184, no. 4690, pp. 881–883, 1959, doi: 10.1038/184881a0. [23] A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-Optical Signal Processing,” Journal of Lightwave Technology, vol. 32, no. 4, pp. 660–680, 2014, doi: 10.1109/JLT.2013.2287219. [24] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of Things for Smart Cities,” IEEE Internet Things J, vol. 1, no. 1, pp. 22–32, 2014, doi: 10.1109/JIOT.2014.2306328. [25] S. Addanki, I. S. Amiri, and P. Yupapin, “Review of optical fibers-introduction and applications in fiber lasers,” Results Phys, vol. 10, pp. 743–750, 2018, doi: https://doi.org/10.1016/j.rinp.2018.07.028. [26] J. Wang, Y. Han, Z. Cao, X. Xu, J. Zhang, and F. Xiao, “Applications of optical fiber sensor in pavement Engineering: A review,” Constr Build Mater, vol. 400, p. 132713, 2023, doi: https://doi.org/10.1016/j.conbuildmat.2023.132713. [27] Y. Liu, J. Xie, S. Liu, Y. Zhao, Y. Zhu, and G. Qi, “Research on the methodology of development and calibration of flexible encapsulated fiber Bragg grating sensors,” Measurement, vol. 201, p. 111730, 2022, doi: https://doi.org/10.1016/j.measurement.2022.111730. [28] A. D. Kersey, D. A. Jackson, and M. Corke, “A simple fibre Fabry-Perot sensor,” Opt Commun, vol. 45, no. 2, pp. 71–74, 1983, doi: https://doi.org/10.1016/0030-4018(83)90047-0. [29] M. de Vries, V. Arya, S. Meller, S. F. Masri, and R. O. Claus, “Implementation of EFPI-based optical-fiber sensor instrumentation for the NDE of concrete structures,” Cem Concr Compos, vol. 19, no. 1, pp. 69–79, 1997, doi: https://doi.org/10.1016/S0958-9465(96)00043-1. [30] L. Jiao, N. Zhong, X. Zhao, S. Ma, X. Fu, and D. Dong, “Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water,” TrAC Trends in Analytical Chemistry, vol. 127, p. 115892, 2020, doi: https://doi.org/10.1016/j.trac.2020.115892. [31] G. Stewart, W. Jin, and B. Culshaw, “Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared,” Sens Actuators B Chem, vol. 38, no. 1, pp. 42–47, 1997, doi: https://doi.org/10.1016/S0925-4005(97)80169-4. 63 [32] Alan Rogers, “Distributed optical-fibre sensing,” Meas Sci Technol, vol. 10, no. 8, p. R75, 1999, doi: 10.1088/0957-0233/10/8/201. [33] P. Lu et al., “Distributed optical fiber sensing: Review and perspective,” Dec. 01, 2019, American Institute of Physics Inc. doi: 10.1063/1.5113955. [34] E. F. de Macedo, L. S. Nascimento, Y. Hou, R. Mathey, and D. B. Tada, “Simultaneous detection of CA-125 and mesothelin by gold nanoparticles in surface plasmon resonance,” Sens Biosensing Res, vol. 43, p. 100609, 2024, doi: https://doi.org/10.1016/j.sbsr.2023.100609. [35] C. M. Miyazaki, F. M. Shimizu, and M. Ferreira, “6 - Surface Plasmon Resonance (SPR) for Sensors and Biosensors,” in Nanocharacterization Techniques, A. L. Da Róz, M. Ferreira, F. de Lima Leite, and O. N. Oliveira, Eds., William Andrew Publishing, 2017, pp. 183–200. doi: https://doi.org/10.1016/B978-0-323-49778-7.00006-0. [36] A. S. Kushwaha, A. Kumar, R. Kumar, and S. K. Srivastava, “A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity,” Photonics Nanostruct, vol. 31, pp. 99–106, 2018, doi: https://doi.org/10.1016/j.photonics.2018.06.003. [37] Y. Yu et al., “Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,” Opt Express, vol. 18, no. 15, pp. 15383–15388, 2010, doi: 10.1364/OE.18.015383. [38] M. J. Bin Murshed Leon and A. S. Disha, “A simple structure of PCF based sensor for sensing sulfur dioxide gas with high sensitivity and better birefringence,” Sensors International, vol. 2, p. 100115, 2021, doi: https://doi.org/10.1016/j.sintl.2021.100115. [39] H. Ademgil and S. Haxha, “PCF Based Sensor with High Sensitivity, High Birefringence and Low Confinement Losses for Liquid Analyte Sensing Applications,” Sensors, vol. 15, no. 12, pp. 31833– 31842, 2015, doi: 10.3390/s151229891. [40] P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat Photonics, vol. 8, no. 4, pp. 278–286, 2014, doi: 10.1038/nphoton.2013.312. [41] J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas filled hollow-core photonic crystal fibers [Invited],” Journal of the Optical Society of America B, vol. 28, no. 12, pp. A11–A26, 2011, doi: 10.1364/JOSAB.28.000A11. [42] S. M. Mahbub, M. H. M. Shamim, and R. H. Sagor, “Gas Detection Utilizing Soliton Effect Pulse Compression in a Hollow Core Photonic Crystal Fiber,” in 2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT), 2024, pp. 308– 312. doi: 10.1109/ICEEICT62016.2024.10534440. [43] S. M. Mahbub, A. A. M. Nafiz, A. A. Protiva, M. Tamim, and R. Rahad, “Ultra-short pulse: A comprehensive way of sensing pure solvents through hollow core photonic crystal fiber sensor,” Opt Mater (Amst), vol. 156, p. 116028, 2024, doi: https://doi.org/10.1016/j.optmat.2024.116028. [44] M. Mahbub, A. Al, M. Nafiz, A. Protiva, M. Tamim, and R. Hasan Sagor, “Sensing fuel adulteration level in diesel analyzing the change in shape of ultra-short pulse sent through Hollow Core Photonic Crystal Fiber,” 2024. [Online]. Available: https://ssrn.com/abstract=4765839 [45] A. L. Gaeta, “Nonlinear optics in hollow-core photonic crystal fibers,” in CLEO/Europe. 2005 Conference on Lasers and Electro-Optics Europe, 2005., 2005, pp. 199–200. doi: 10.1109/CLEOE.2005.1567986. 64 [46] P. Biswas and S. Ghosh, “A Specialty Endless-Core Photonic Bandgap Fiber with Ultra-wide Bandwidth for Short Pulse Propagation,” in Frontiers in Optics / Laser Science, B. Lee Mazzali C. Corwin K. and Jason Jones R., Ed., in OSA Technical Digest. Washington, DC: Optica Publishing Group, 2020, p. JTu1A.29. doi: 10.1364/FIO.2020.JTu1A.29. [47] D. Bermudez, “Propagation of Ultra-Short Higher-Order Solitons in a Photonic Crystal Fiber,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Apr. 2016. doi: 10.1088/1742-6596/698/1/012017. [48] J. Lægsgaard, “Soliton formation in hollow-core photonic bandgap fibers,” Applied Physics B, vol. 95, no. 2, pp. 293–300, 2009, doi: 10.1007/s00340-008-3357-z. [49] X. Hu et al., “Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers,” Appl Opt, vol. 49, no. 26, pp. 4984–4989, 2010, doi: 10.1364/AO.49.004984. [50] X. Qi et al., “Understanding Nonlinear Pulse Propagation in Liquid Strand-Based Photonic Bandgap Fibers,” Crystals (Basel), vol. 11, no. 3, 2021, doi: 10.3390/cryst11030305. [51] R. Yu, Y. Chen, L. Shui, and L. Xiao, “Hollow-core photonic crystal fiber gas sensing,” May 02, 2020, MDPI AG. doi: 10.3390/s20102996. [52] S. Eilzer and B. Wedel, “Hollow Core Optical Fibers for Industrial Ultra Short Pulse Laser Beam Delivery Applications,” Fibers, vol. 6, no. 4, 2018, doi: 10.3390/fib6040080. [53] M. Harvey, R. Cisek, and D. Tokarz, “Spectral Broadening of Ultrashort Pulses by Nonlinear Optical Effects in Photonic Crystal Fiber,” in 2021 Photonics North (PN), 2021, pp. 1–2. doi: 10.1109/PN52152.2021.9597897. [54] C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Mar. 2019, doi: 10.1103/RevModPhys.89.045003. [55] S. Ahmed, J. R. Mou, M. A. Mollah, and N. Debnath, “Hollow-core Photonic Crystal Fiber Sensor for Refractive Index Sensing,” in 2019 IEEE International Conference on Telecommunications and Photonics (ICTP), 2019, pp. 1–4. doi: 10.1109/ICTP48844.2019.9041790. [56] N. F. Baharin et al., “HOLLOW-CORE PHOTONIC CRYSTAL FIBER REFRACTIVE INDEX SENSOR BASED ON MODAL INTERFERENCE,” vol. 11, no. 9, 2016, [Online]. Available: www.arpnjournals.com [57] R. Senthil, U. Anand, and P. Krishnan, “Hollow-core high-sensitive photonic crystal fiber for liquid-/gas-sensing applications,” Applied Physics A, vol. 127, no. 4, p. 282, 2021, doi: 10.1007/s00339-021-04417-9. [58] Md. A. Habib, Md. S. Anower, L. F. Abdulrazak, and Md. S. Reza, “Hollow core photonic crystal fiber for chemical identification in terahertz regime,” Optical Fiber Technology, vol. 52, p. 101933, 2019, doi: https://doi.org/10.1016/j.yofte.2019.101933. [59] M. M. A. Eid, M. A. Habib, M. S. Anower, and A. N. Z. Rashed, “Hollow Core Photonic Crystal Fiber (PCF)–Based Optical Sensor for Blood Component Detection in Terahertz Spectrum,” Brazilian Journal of Physics, vol. 51, no. 4, pp. 1017–1025, Aug. 2021, doi: 10.1007/s13538-021- 00906-7. [60] Md. R. Sardar, M. Faisal, and K. Ahmed, “Simple hollow core photonic crystal fiber for monitoring carbon dioxide gas with very high accuracy,” Sens Biosensing Res, vol. 31, p. 100401, 2021, doi: https://doi.org/10.1016/j.sbsr.2021.100401. 65 [61] M. Khelladi, “Study and Synthesis of the Propagation of Ultrashort Laser Pulses in Medias: Fused Silica, Photonic Crystal Fiber, Air Silica and Hollow Core,” 2022, doi: 10.21203/rs.3.rs 2165945/v1. [62] P. J. Mosley, W. C. Huang, M. G. Welch, B. J. Mangan, W. J. Wadsworth, and J. C. Knight, “Ultrashort pulse compression and delivery in a hollow-core photonic crystal fiber at 540 nm wavelength,” Opt Lett, vol. 35, no. 21, pp. 3589–3591, 2010, doi: 10.1364/OL.35.003589. [63] G. P. Agrawal, “Chapter 2 - Pulse propagation in fibers,” in Nonlinear Fiber Optics (Sixth Edition), Sixth Edition., G. P. Agrawal, Ed., Academic Press, 2019, pp. 27–55. doi: https://doi.org/10.1016/B978-0-12-817042-7.00009-9. [64] G. P. Agrawal, “Chapter 3 - Group-velocity dispersion,” in Nonlinear Fiber Optics (Sixth Edition), Sixth Edition., G. P. Agrawal, Ed., Academic Press, 2019, pp. 57–84. doi: https://doi.org/10.1016/B978-0-12-817042-7.00010-5. [65] S. Garzo and M. Mendoza, “Simulation for fiber optics pulse propagation through a numerical solution of the Nonlinear Schrödinger Equation.” [66] R. W. Boyd, “Chapter 13 - Ultrafast and Intense-Field Nonlinear Optics,” in Nonlinear Optics (Third Edition), R. W. Boyd, Ed., Burlington: Academic Press, 2008, pp. 561–587. doi: https://doi.org/10.1016/B978-0-12-369470-6.00013-7. [67] “Thorlabs PCF Specification.” Accessed: Dec. 31, 2023. [Online]. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=912 [68] Mark G Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas Sci Technol, vol. 9, no. 4, p. 545, 1998, doi: 10.1088/0957-0233/9/4/001. [69] U. Yaqoob and M. I. Younis, “Chemical Gas Sensors: Recent Developments, Challenges, and the Potential of Machine Learning—A Review,” Sensors, vol. 21, no. 8, 2021, doi: 10.3390/s21082877. [70] T. Akamatsu, T. Itoh, and W. Shin, “Mixed-Potential Gas Sensors Using an Electrolyte Consisting of Zinc Phosphate Glass and Benzimidazole,” Sensors, vol. 17, no. 1, 2017, doi: 10.3390/s17010097. [71] M. Elsherif et al., “Optical Fiber Sensors: Working Principle, Applications, and Limitations,” Adv Photonics Res, vol. 3, no. 11, Nov. 2022, doi: 10.1002/adpr.202100371. [72] M.-J. Li, “Optical Fiber Evolution Over the Past 5 Decades,” in Frontiers in Optics / Laser Science, Optica Publishing Group, 2020, p. FM4D.1. doi: 10.1364/FIO.2020.FM4D.1. [73] S. K. Dubey, A. Kumar, A. Kumar, A. Pathak, and S. K. Srivastava, “A study of highly sensitive D shaped optical fiber surface plasmon resonance based refractive index sensor using grating structures of Ag-TiO2 and Ag-SnO2,” Optik (Stuttg), vol. 252, p. 168527, 2022, doi: https://doi.org/10.1016/j.ijleo.2021.168527. [74] H. Liang, T. Shen, Y. Feng, H. Liu, and W. Han, “A D-Shaped Photonic Crystal Fiber Refractive Index Sensor Coated with Graphene and Zinc Oxide,” Sensors, vol. 21, no. 1, 2021, doi: 10.3390/s21010071. [75] R. Paschotta, Article on Sellmeier formula in the Encyclopedia of Laser Physics and Technology, 1. edition October 2008, Wiley-VCH, ISBN 978-3-527-40828-3 66 [76] A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Interferometric determination of the refractive index of carbon dioxide in the ultraviolet region,” Opt Commun, vol. 9, no. 4, pp. 432–434, 1973, doi: https://doi.org/10.1016/0030-4018(73)90289-7. [77] R. Rollefson and R. Havens, “Index of Refraction of Methane in the Infra-Red and the Dipole Moment of the CH Bond,” Physical Review, vol. 57, no. 8, pp. 710–717, Apr. 1940, doi: 10.1103/PhysRev.57.710. [78] A. Bideau-Mehu, Y. Guern, R. Abjean, and A. Johannin-Gilles, “Measurement of refractive indices of neon, argon, krypton and xenon in the 253.7–140.4 nm wavelength range. Dispersion relations and estimated oscillator strengths of the resonance lines,” J Quant Spectrosc Radiat Transf, vol. 25, no. 5, pp. 395–402, 1981, doi: https://doi.org/10.1016/0022-4073(81)90057-1. [79] A. Bostani, A. Tehranchi, and R. Kashyap, “Super-tunable, broadband upconversion of a high power CW laser in an engineered nonlinear crystal,” Sci Rep, vol. 7, no. 1, Dec. 2017, doi: 10.1038/s41598-017-00974-3. [80] S. A. Mousavi et al., “Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers,” Opt Express, vol. 26, no. 7, p. 8866, Apr. 2018, doi: 10.1364/oe.26.008866. [81] Z. Liu et al., “Reflective-distributed SPR sensor based on twin-core fiber,” Opt Commun, vol. 366, pp. 107–111, 2016, doi: https://doi.org/10.1016/j.optcom.2015.12.018. [82] Wright, S.F.; Zadrazil, I.; Markides, C.N. (2017). "A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid– liquid flows". Experiments in Fluids. 58 (9): 108. Bibcode:2017ExFl...58..108W. doi:10.1007/s00348-017-2386-y. hdl:10044/1/49407. [83] 184 Silicone Elastomer" (PDF) (Product Information). Dow Corning. Retrieved 11 December 2012. [84] "Manual for Sugar Solution Prism" (PDF). A/S S. Frederiksen. 3 August 2005. Archived from the original (PDF) on 3 March 2016. Retrieved 21 March 2012. [85] J. Volk, T. Le Grand, I. Bársony, J. Gombkötő, and J. J. Ramsden, “Porous silicon multilayer stack for sensitive refractive index determination of pure solvents,” J Phys D Appl Phys, vol. 38, no. 8, p. 1313, 2005, doi: 10.1088/0022-3727/38/8/032. [86] W. E. Luttrell and A. L. LaGrow, “Acetone,” 2014, Elsevier Inc. doi: 10.1016/j.jchas.2014.03.006. [87] M. Alshareef et al., “Optical Detection of Acetone Using ‘ Turn-Off’ Fluorescent Rice Straw Based Cellulose Carbon Dots Imprinted onto Paper Dipstick for Diabetes Monitoring,” ACS Omega, 2022, doi: 10.1021/acsomega.2c01492. [88] C. Togbé, P. Dagaut, A. Mzé-Ahmed, P. Diévart, F. Halter, and F. Foucher, “Experimental and detailed kinetic modeling study of 1-hexanol oxidation in a pressurized jet-stirred reactor and a combustion bomb,” Energy and Fuels, vol. 24, no. 11, pp. 5859–5875, Nov. 2010, doi: 10.1021/ef101255w [89] C. Cravotto et al., “Towards Substitution of Hexane as Extraction Solvent of Food Products and Ingredients with No Regrets,” Nov. 01, 2022, MDPI. doi: 10.3390/foods11213412. [90] N. M. Saad, E.-S. M. El-Rabaie, and A. A. M. Khalaf, “Photonic Crystal Fiber Sensors, Literature Review, Challenges, and Some Novel Trends. |
en_US |