dc.identifier.citation |
[1] C. F. Moreno-García, E. Elyan, and C. Jayne, “New trends on digitisation of complex engineering drawings,” Neural Computing and Applications, vol. 31, no. 6, pp. 1695–1712, Jun. 2019. [Online]. Available: http://link.springer.com/ 10.1007/s00521-018-3583-1 [2] V. Agrawal, J. Jagtap, and M. P. Kantipudi, “An Overview of Hand-Drawn Diagram Recognition Methods and Applications,” IEEE Access, vol. 12, pp. 19 739–19 751, 2024. [Online]. Available: https://ieeexplore.ieee.org/document/ 10413540/ [3] L. Xie, Y. Lu, T. Furuhata, S. Yamakawa, W. Zhang, A. Regmi, L. Kara, and K. Shimada, “Graph neural network-enabled manufacturing method classification from engineering drawings,” Computers in Industry, vol. 142, p. 103697, Nov. 2022. [Online]. Available: https://linkinghub.elsevier.com/retrieve/ pii/S016636152200094X [4] J. Fang, Z. Feng, and B. Cai, “DrawnNet: Offline Hand-Drawn Diagram Recog nition Based on Keypoint Prediction of Aggregating Geometric Characteristics,” Entropy (Basel, Switzerland), vol. 24, no. 3, p. 425, Mar. 2022. [5] C. N. Loong, J. D. Q. San Juan, and C. Chang, “Image-based structural analysis for education purposes: A proof-of-concept study,” Computer Applications in Engineering Education, vol. 31, no. 5, pp. 1200–1218, Sep. 2023. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/cae.22635 [6] M. F. Theisen, K. N. Flores, L. Schulze Balhorn, and A. M. Schweidtmann, “Digitization of chemical process flow diagrams using deep convolutional neural networks,” Digital Chemical Engineering, vol. 6, p. 100072, Mar. 2023. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2772508122000631 [7] S. Mani, M. A. Haddad, D. Constantini, W. Douhard, Q. Li, and L. Poirier, “Automatic Digitization of Engineering Diagrams using Deep Learning and Graph Search,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern 94 Recognition Workshops (CVPRW). Seattle, WA, USA: IEEE, Jun. 2020, pp. 673–679. [Online]. Available: https://ieeexplore.ieee.org/document/9151021/ [8] H. O. Brinkhaus, A. Zielesny, C. Steinbeck, and K. Rajan, “DECIMER—hand drawn molecule images dataset,” Journal of Cheminformatics, vol. 14, no. 1, p. 36, Jun. 2022. [Online]. Available: https://doi.org/10.1186/ s13321-022-00620-9 [9] E. C. Pender and J. J. Healy, “Accessible Circuit Diagrams,” in 2022 33rd Irish Signals and Systems Conference (ISSC). Cork, Ireland: IEEE, Jun. 2022, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/9826152/ [10] M. Alhalabi, M. Ghazal, F. Haneefa, J. Yousaf, and A. El-Baz, “Smartphone Handwritten Circuits Solver Using Augmented Reality and Capsule Deep Networks for Engineering Education,” Education Sciences, vol. 11, no. 11, p. 661, Oct. 2021. [Online]. Available: https://www.mdpi.com/2227-7102/11/11/ 661 [11] L. W. Nagel and D. Pederson, “Spice (simulation program with integrated circuit emphasis),” EECS Department, University of California, Berkeley, Tech. Rep. UCB/ERL M382, Apr 1973. [Online]. Available: http://www2.eecs.berkeley. edu/Pubs/TechRpts/1973/22871.html [12] M. Dey, S. M. Mia, N. Sarkar, A. Bhattacharya, S. Roy, S. Malakar, and R. Sarkar, “A two-stage CNN-based hand-drawn electrical and electronic circuit component recognition system,” Neural Computing and Applications, vol. 33, no. 20, pp. 13 367–13 390, Oct. 2021. [Online]. Available: https://link.springer.com/10.1007/s00521-021-05964-1 [13] Z. Huoming and S. Lixing, “Research on K nearest neighbor identification of hand-drawn circuit diagram,” Journal of Physics: Conference Series, vol. 1325, no. 1, p. 012233, Oct. 2019. [Online]. Available: https://iopscience.iop.org/ article/10.1088/1742-6596/1325/1/012233 [14] Jain University, Bangalore, Karnataka (State), India, L. N. R, D. R, and P. S, “Handwritten Electric Circuit Diagram Recognition: An Approach Based on Finite State Machine,” International Journal of Machine Learning and Computing, vol. 9, no. 3, pp. 374–380, Jun. 2019. [Online]. Available: http: //www.ijmlc.org/index.php?m=content&c=index&a=show&catid=85&id=939 [15] S. Roy, A. Bhattacharya, N. Sarkar, S. Malakar, and R. Sarkar, “Offline hand-drawn circuit component recognition using texture and shape-based features,” Multimedia Tools and Applications, vol. 79, no. 41-42, pp. 31 353– 95 31 373, Nov. 2020. [Online]. Available: https://link.springer.com/10.1007/ s11042-020-09570-6 [16] A. Mohan, A. Mohan, B. Indushree, M. Malavikaa, and C. P. Narendra, “Generation of Netlist from a Hand drawn Circuit through Image Processing and Machine Learning,” in 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP). Vijayawada, India: IEEE, Feb. 2022, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.org/document/9760577/ [17] S. Amraee, M. Chinipardaz, M. Charoosaei, and M. A. Mirzaei, “Handwritten Logic Circuits Analysis Using the YOLO Network and a New Boundary Tracking Algorithm,” IEEE Access, vol. 10, pp. 76 095–76 104, 2022, conference Name: IEEE Access. [Online]. Available: https://ieeexplore.ieee.org/document/9832898 [18] R. R. Rachala and M. R. Panicker, “Hand-Drawn Electrical Circuit Recognition Using Object Detection and Node Recognition,” SN Computer Science, vol. 3, no. 3, p. 244, Apr. 2022. [Online]. Available: https: //doi.org/10.1007/s42979-022-01159-0 [19] S. Mizanur Rahman, J. Bayer, and A. Dengel, “Graph-Based Object Detection Enhancement for Symbolic Engineering Drawings,” in Document Analysis and Recognition – ICDAR 2021 Workshops, E. H. Barney Smith and U. Pal, Eds. Cham: Springer International Publishing, 2021, vol. 12916, pp. 74–90, series Title: Lecture Notes in Computer Science. [Online]. Available: https://link.springer.com/10.1007/978-3-030-86198-8_6 [20] F. Thoma, J. Bayer, Y. Li, and A. Dengel, “A Public Ground-Truth Dataset for Handwritten Circuit Diagram Images,” in Document Analysis and Recognition – ICDAR 2021 Workshops, E. H. Barney Smith and U. Pal, Eds. Cham: Springer International Publishing, 2021, vol. 12916, pp. 20–27, series Title: Lecture Notes in Computer Science. [Online]. Available: https://link.springer.com/10.1007/978-3-030-86198-8_2 [21] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds. Cham: Springer International Publishing, 2015, pp. 234–241. [22] M. Moetesum, S. Waqar Younus, M. Ali Warsi, and I. Siddiqi, “Segmentation and Recognition of Electronic Components in Hand-Drawn Circuit Diagrams,” ICST Transactions on Scalable Information Systems, vol. 5, no. 16, p. 154478, Apr. 2018. [Online]. Available: http://eudl.eu/doi/10.4108/eai.13-4-2018.154478 96 [23] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, Jun. 2005, pp. 886–893 vol. 1, iSSN: 1063-6919. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/1467360 [24] S. Suthaharan, “Support vector machine,” in Machine learning models and algorithms for big data classification: Thinking with examples for effective learning. Boston, MA: Springer US, 2016, pp. 207–235. [Online]. Available: https://doi.org/10.1007/978-1-4899-7641-3_9 [25] O. Kramer, “K-nearest neighbors,” in Dimensionality reduction with unsuper vised nearest neighbors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 13–23. [Online]. Available: https://doi.org/10.1007/978-3-642-38652-7_2 [26] A. Bhattacharya, S. Roy, N. Sarkar, S. Malakar, and R. Sarkar, “Circuit Component Detection in Offline Handdrawn Electrical/Electronic Circuit Diagram,” in 2020 IEEE Calcutta Conference (CALCON). Kolkata, India: IEEE, Feb. 2020, pp. 80–84. [Online]. Available: https://ieeexplore.ieee.org/ document/9106527/ [27] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 6999–7019, Dec. 2022, conference Name: IEEE Transactions on Neural Networks and Learning Systems. [Online]. Available: https://ieeexplore.ieee.org/abstract/ document/9451544 [28] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 779–788, iSSN: 1063- 6919. [Online]. Available: https://ieeexplore.ieee.org/document/7780460 [29] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive Survey on Graph Neural Networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 1, pp. 4–24, Jan. 2021, conference Name: IEEE Transactions on Neural Networks and Learning Systems. [Online]. Available: https://ieeexplore.ieee.org/document/9046288 [30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc., Dec. 2017, pp. 6000– 6010. 97 [31] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards real-time object detection with region proposal networks,” in Proceedings of the 28th Interna tional Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’15. Cambridge, MA, USA: MIT Press, Dec. 2015, pp. 91–99. [32] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional networks: a comprehensive review,” Computational Social Networks, vol. 6, no. 1, p. 11, Nov. 2019. [Online]. Available: https://doi.org/10.1186/s40649-019-0069-y [33] W. Hu, X. Zhan, and M. Tong, “Parsing Netlists of Integrated Circuits from Images via Graph Attention Network,” Sensors, vol. 24, no. 1, p. 227, Dec. 2023. [Online]. Available: https://www.mdpi.com/1424-8220/24/1/227 [34] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Los Alamitos, CA, USA: IEEE Computer Society, Oct 2021, pp. 9992–10 002. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00986 [35] J. M. Patil, J. Bayer, and A. Dengel, “Graph Neural Networks for Circuit Diagram Pattern Generation,” in Deep Learning Theory and Applications, D. Conte, A. Fred, O. Gusikhin, and C. Sansone, Eds. Cham: Springer Nature Switzerland, 2023, vol. 1875, pp. 351–369, series Title: Communications in Computer and Information Science. [Online]. Available: https://link.springer. com/10.1007/978-3-031-39059-3_24 [36] N. Ahmed, M. F. Adnan, A. Shafiullah, H. J. Parash, M. S. Rahman, I. C. Akib, and G. Sarowar, “Digitize-HCD: A Dataset for Digitization of Handwritten Circuit Diagrams,” vol. 1, Sep. 2024, publisher: Mendeley Data. [Online]. Available: https://data.mendeley.com/datasets/rngcz5wtv8/1 [37] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common Objects in Context,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014, pp. 740–755. [38] Z. Kuang, H. Sun, Z. Li, X. Yue, T. H. Lin, J. Chen, H. Wei, Y. Zhu, T. Gao, W. Zhang, K. Chen, W. Zhang, and D. Lin, “MMOCR: A Comprehensive Toolbox for Text Detection, Recognition and Understanding,” in Proceedings of the 29th ACM International Conference on Multimedia, ser. MM ’21. New York, NY, USA: Association for Computing Machinery, Oct. 2021, pp. 3791–3794. [Online]. Available: https://doi.org/10.1145/3474085.3478328 98 [39] H. Feng, S. Liu, J. Deng, W. Zhou, and H. Li, “Deep Unrestricted Document Image Rectification,” Trans. Multi., vol. 26, pp. 6142–6154, Dec. 2023. [Online]. Available: https://doi.org/10.1109/TMM.2023.3347094 [40] M. A. Souibgui and Y. Kessentini, “DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 3, pp. 1180–1191, Mar. 2022, conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence. [Online]. Available: https://ieeexplore.ieee.org/document/9187695 [41] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” Nov. 2014, arXiv:1411.1784. [Online]. Available: http://arxiv.org/abs/1411.1784 [42] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Commun. ACM, vol. 63, no. 11, pp. 139–144, Oct. 2020. [Online]. Available: https://dl.acm.org/doi/10.1145/3422622 [43] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer Society, Jun 2015, pp. 3431–3440. [Online]. Available: https://doi.ieeecomputersociety. org/10.1109/CVPR.2015.7298965 [44] W. A. Mustafa, W. Khairunizam, I. Zunaidi, Z. M. Razlan, and A. B. Shahriman, “A Comprehensive Review on Document Image (DIBCO) Database,” IOP Conference Series: Materials Science and Engineering, vol. 557, no. 1, p. 012006, Jun. 2019, publisher: IOP Publishing. [Online]. Available: https://dx.doi.org/10.1088/1757-899X/557/1/012006 [45] M. Xu, S. Yoon, A. Fuentes, and D. S. Park, “A Comprehensive Survey of Image Augmentation Techniques for Deep Learning,” Pattern Recognition, vol. 137, p. 109347, May 2023. [Online]. Available: https: //linkinghub.elsevier.com/retrieve/pii/S0031320323000481 [46] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond Empirical Risk Minimization,” Feb. 2018. [Online]. Available: https: //openreview.net/forum?id=r1Ddp1-Rb [47] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” Apr. 2020, arXiv:2004.10934 [cs, eess]. [Online]. Available: http://arxiv.org/abs/2004.10934 [48] A. Kalra, G. Stoppi, B. Brown, R. Agarwal, and A. Kadambi, “Towards Rotation Invariance in Object Detection,” in 2021 IEEE/CVF International Conference 99 on Computer Vision (ICCV). Montreal, QC, Canada: IEEE, Oct. 2021, pp. 3510–3520. [Online]. Available: https://ieeexplore.ieee.org/document/9711049/ [49] C.-Y. Wang, H.-Y. Mark Liao, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh, and I.-H. Yeh, “Cspnet: A new backbone that can enhance learning capability of cnn,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Los Alamitos, CA, USA: IEEE Computer Society, Jun 2020, pp. 1571–1580. [Online]. Available: https: //doi.ieeecomputersociety.org/10.1109/CVPRW50498.2020.00203 [50] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer Society, Jul 2017, pp. 936–944. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.106 [51] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for instance segmentation,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer Society, Jun 2018, pp. 8759–8768. [Online]. Available: https: //doi.ieeecomputersociety.org/10.1109/CVPR.2018.00913 [52] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for neural network function approximation in reinforcement learning,” Neural Networks, vol. 107, pp. 3–11, Nov. 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0893608017302976 [53] Z. Zheng, P. Wang, D. Ren, W. Liu, R. Ye, Q. Hu, and W. Zuo, “Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation,” IEEE Transactions on Cybernetics, vol. 52, no. 8, pp. 8574–8586, Aug. 2022, conference Name: IEEE Transactions on Cybernetics. [Online]. Available: https://ieeexplore.ieee.org/document/9523600 [54] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “MMDetection: Open MMLab Detection Toolbox and Benchmark,” Jun. 2019, arXiv:1906.07155 [cs, eess]. [Online]. Available: http://arxiv.org/abs/1906.07155 [55] M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” in Proceedings of the 36th International Conference on Machine Learning. PMLR, May 2019, pp. 6105–6114, iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.press/v97/tan19a.html 100 [56] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer Society, Jun 2018, pp. 4510–4520. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00474 [57] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),” Feb. 2019, arXiv:1803.08375. [Online]. Available: http://arxiv.org/abs/1803.08375 [58] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Jan. 2017, arXiv:1412.6980. [Online]. Available: http://arxiv.org/abs/1412.6980 [59] M. Liao, Z. Wan, C. Yao, K. Chen, and X. Bai, “Real-Time Scene Text Detection with Differentiable Binarization,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 11 474–11 481, Apr. 2020, number: 07. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/6812 [60] H. Freeman and R. Shapira, “Determining the minimum-area encasing rectangle for an arbitrary closed curve,” Communications of the ACM, vol. 18, no. 7, pp. 409–413, Jul. 1975. [Online]. Available: https://dl.acm.org/doi/10.1145/360881. 360919 [61] H. Li, P. Wang, C. Shen, and G. Zhang, “Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 8610–8617, Jul. 2019, number: 01. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/ view/4881 [62] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 770–778, iSSN: 1063-6919. [Online]. Available: https://ieeexplore.ieee.org/document/7780459 [63] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, conference Name: Neural Computation. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/ 6795963 |
en_US |