dc.identifier.citation |
[1] Alexandros Emboras, “Atomic scale plasmonic devices,” 18th international conference on Transparent Optical Networds, pp. 1-4, 2016. [2] Tai Li, Lin Li, S, N, Zhu, “Steering surface plasmons on metal surface,” Conference on Lasers and Electro-Optics, pp. 1-2, 2012. [3] Z. Ismail Khan, M. K. Mohd Salleh, Gaetan, Prigent, “Achievable bandwwidth of a quarter wavelength side-coupled ring resonator,” IEEE Symposium on Industrial Electronics & Applications, vol,1, pp. 358-361, 2009. [4] H. A. Atwater, “The promise of Plasmonics,” Sci. Am., vol. 296, no.4, pp. 56-63, Apr. 2007. [5] Stefan A. Maier, “Plasmonics: Metal nanostructures for subwavelength photonic devices,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, issue. 6, pp. 1214-1220, 2006. [6] Junchang Zhang, Liubiao Zhong, Jianmei Chen, Lin Jiang, “Plasmon-enhanced optoelectronic devices based on metal nanostructures,” Progress in Electromagnetic Research Symposium, pp.829-829, 2016. [7] Chan Ho Kim, Kai Chang, Xiaoguang Liu, “Varactor tuned ring resonator filter with wide tunable bandwidth,” IEEE Radio & Wireless Symposium, pp. 141-143, 2015. [8] Tsu-Wei Lin, Jen-Tsai Kuo, Shyh-Jong Kuang, “New miniaturized ring resonator bandpass filter with wide upper stopband,” IEEE MTT-S International Microwave Symposium Digest, pp. 1-4, 2013. [9] M. A. M Muhammad, et al., “Multilayer structure of ring resonator filter for digital broadcasting,” International Conference on Computer Applications & Industrial Electronics, pp. 396-399, 2010. 73 [10] Hak-Sun Lee, Gun-Duk Kim, Sang-Shin Lee, “Temperature compensated refractometric biosensor exploiting ring resonators,” IEEE Photonics Technology Letters, vol. 21, pp. 1136-1136, 2009. [11] Djafar. K. Mynbaev, Vitaly Sukharenko, “Plasmonics for optical communications: The use of graphene for optimizing coupling efficiency,” International Carribean Conference on Devices, Circuits & Systems, pp. 1-4, 2014. [12] Linjie Zhou, et al., “Silicon active microring resonators for optical switching,” Progress in Electromagnetic Research Symposium, pp. 2621-2621, 2016. [13] Xiao-yang Zhang, et al., “Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides,” 3rd International Nanoelectronics Conference (INEC), p.1355-1356, 2010. [14] Y. D. Zhang, H. Tian, X. N. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slowlight structure,” Opt. Lett. 35, 691-693, 2010. [15] X. Q. Fan, “Silicon dual-ring modulator,” Opt. Express 17, 20783-20793, 2009. [16] P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A.Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Phot. Technol. Lett. 12, 398-400, 2000. [17] B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring resonator coupled lasers,” Appl. Phys. Lett. 79, 3561–3563, 2001. [18] L. Y. Mario and M. K. Chin, “Optical buffer with higher delaybandwidth product in a two-ring system,” Opt. Express 16, 1796-1807, 2008. [19] Yundong Zhang, Kaiyang Wang, Xiaoqi Liu, Xuenan Zhang, “An add-drop ring resonator interferometer sensor with high sensitivity,” Seventh International Conference on Sensing Technology (ICST), pp.316-317, 2013. [20] Arpita Sharma, Gloria Jospeh, “Add drop filter for CWDM systems using photonic crystal ring resonator,” International Conference on Advances in Engineering & Technology Research (ICAETR), pp. 1-3, 2014. 74 [21] Mirza Fuad Adnan and Hasibul Hasan, "Plasmonic resonances in hexagonal split-ring resonator,” International Conference on Electrical, Computer and Communication Engineering (ECCE), 477-479, 2017. [22] Yatinda Gaurav, Arvind Kumar Pandey, R. K. Chauhan, "Single notch band UWB BPF using square ring resonator,” 3rd International Conference on Recent Advances in Information Technology (RAIT), 147-148, 2016. [23] E. Verhagen, "Subwavelength light confinement with surface plasmon polaritons," 2009. [24] H. Raether, Surface plasmons on smooth surfaces: Springer, 1988. [25] A. Archambault, T. V. Teperik, F. Marquier, and J.-J. Greffet, "Surface plasmon Fourier optics," Physical Review B, vol. 79, p. 195414, 2009. [26] E. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Applied Physics B, vol. 84, pp. 3-9, 2006. [27] J. T. Krug II, E. J. Sánchez, and X. S. Xie, "Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation," The Journal of chemical physics, vol. 116, pp. 10895-10901, 2002. [28] W. H. Pernice, F. P. Payne, and D. F. Gallagher, "A general framework for the finite-difference time-domain simulation of real metals," Antennas and Propagation, IEEE Transactions on, vol. 55, pp. 916-923, 2007. [29] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied optics, vol. 37, pp. 5271-5283, 1998. [30] M. A. Ordal, R. J. Bell, R. Alexander, L. Long, and M. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Applied optics, vol. 24, pp. 4493-4499, 1985. [31] G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Applied Physics Letters, vol. 87, p. 131102, 2005. 75 [32] H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, et al., "Surface plasmon polariton propagation and combination in Y-shaped metallic channels," Optics express, vol. 13, pp. 10795-10800, 2005. [33] B. Wang and G. P. Wang, "Surface plasmon polariton propagation in nanoscale metal gap waveguides," Optics letters, vol. 29, pp. 1992-1994, 2004. [34] G. Veronis and S. Fan, "Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides," Optics Express, vol. 15, pp. 1211-1221, 2007. [35] P. Ginzburg and M. Orenstein, "Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching," Optics express, vol. 15, pp. 6762-6767, 2007. [36] D. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Applied Physics Letters, vol. 89, p. 041111, 2006. [37] R. Wahsheh, Z. Lu, and M. Abushagur, "Nanoplasmonic air-slot coupler: design and fabrication," in Frontiers in optics, 2012. [38] R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency dependent finite-difference time-domain formulation for dispersive materials,” Electromagnetic Compatibility, IEEE Transactions on, vol. 32, no. 3, pp. 222–227, 1990. [39] D. F. Kelley and R. J. Luebbers, “Piecewise linear recursive convolution for dispersive media using FDTD,” Antennas and Propagation, IEEE Transactions, vol. 44, no. 6, pp. 792–797, 1996. [40] R. J. Luebbers, F. Hunsberger, and K. S. Kunz, “A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma,” Antennas and Propagation, IEEE Transactions on, vol. 39, no. 1, pp. 29–34, 1991. [41] A. Akyurtlu and D. H. Werner, “Bi-FDTD: A novel finite-difference time-domain formulation for modeling wave propagation in bi-isotropic media,” Antennas and Propagation, IEEE Transactions on, vol. 52, no. 2, pp. 416–425, 2004. [42] A. Grande, I. Barba, A. C. Cabeceira, J. Represa, P. P. So, and W. J. Hoefer, “FDTD modeling of transient microwave signals in dispersive and lossy bi- 76 isotropic media,” Microwave Theory and Techniques, IEEE Transactions on, vol. 52, no. 3, pp. 773-784, 2004. [43] A. Akyurtlu and D. H. Werner, “A novel dispersive FDTD formulation for modeling propagation in chiral metamaterials,” Antennas and Propagation, IEEE Transactions, vol. 52, no. 9, pp. 2267–2276, 2004 |
en_US |