dc.identifier.citation |
[1] Y. HE, J. SUN, X. MA, A. V. VASILAKOS, R. YUAN, AND W. GONG, Semi- random backoff: towards resource reservation for channel access in wireless lans, IEEE/ACM Transactions on Networking (TON), 21 (2013), pp. 204–217. [2] HTTPS://WWW.NSNAM.ORG/. [3] A. P. JARDOSH, K. N. RAMACHANDRAN, K. C. ALMEROTH, AND E. M. BELDING- ROYER, Understanding congestion in ieee 802.11 b wireless networks, in Proceed- ings of the 5th ACM SIGCOMM conference on Internet Measurement, USENIX Association, 2005, pp. 25–25. [4] J. LEE AND J. C. WALRAND, Design and analysis of an asynchronous zero collision mac protocol, arXiv preprint arXiv:0806.3542, (2008). [5] T. LI, Q. NI, D. MALONE, D. LEITH, Y. XIAO, AND T. TURLETTI, Aggregation with fragment retransmission for very high-speed wlans, IEEE/ACM Transactions on Networking (ToN), 17 (2009), pp. 591–604. [6] E. H. ONG, J. KNECKT, O. ALANEN, Z. CHANG, T. HUOVINEN, AND T. NIHTILÄ, Ieee 802.11 ac: Enhancements for very high throughput wlans, in Personal indoor and mobile radio communications (PIMRC), 2011 IEEE 22nd international symposium on, IEEE, 2011, pp. 849–853. [7] D. PANIGRAHI AND B. RAMAN, Tdma scheduling in long-distance wifi networks, in INFOCOM 2009, IEEE, IEEE, 2009, pp. 2931–2935. [8] I. PAUDEL AND B. JOUABER, I-dcf: Improved dcf for channel access in ieee 802.11 wireless networks, in Vehicular Technology Conference (VTC Spring), 2014 IEEE 79th, IEEE, 2014, pp. 1–5. [9] L. SANABRIA-RUSSO, J. BARCELO, B. BELLALTA, AND F. GRINGOLI, A high effi- ciency mac protocol for wlans: Providing fairness in dense scenarios, IEEE/ACM Transactions on Networking, 25 (2017), pp. 492–505. BIBLIOGRAPHY [10] S. SEN, R. ROY CHOUDHURY, AND S. NELAKUDITI, No time to countdown: Mi- grating backoff to the frequency domain, in Proceedings of the 17th annual international conference on Mobile computing and networking, ACM, 2011, pp. 241–252. [11] K. TAN, J. FANG, Y. ZHANG, S. CHEN, L. SHI, J. ZHANG, AND Y. ZHANG, Fine- grained channel access in wireless lan, ACM SIGCOMM Computer Communica- tion Review, 41 (2011), pp. 147–158. [12] M. TUYSUZ AND H. A. MANTAR, A beacon-based collision-free channel access scheme for ieee 802.11 wlans, Wireless personal communications, 75 (2014), pp. 155–177. [13] P. WANG AND W. ZHUANG, A collision-free mac scheme for multimedia wireless mesh backbone, IEEE Transactions on Wireless Communications, 8 (2009). [14] Y. XIAO, Ieee 802.11 n: enhancements for higher throughput in wireless lans, IEEE Wireless Communications, 12 (2005), pp. 82–91. [15] Y. XIAO AND J. ROSDAHL, Performance analysis and enhancement for the current and future ieee 802.11 mac protocols, ACM SIGMOBILE Mobile Computing and Communications Review, 7 (2003), pp. 6–19. [16] W. ZAME, J. XU, AND M. VAN DER SCHAAR, Learning perfect coordination with minimal feedback in wireless multi-access communications, in Global Communi- cations Conference (GLOBECOM), 2013 IEEE, IEEE, 2013, pp. 3861–3866. [17] H. ZHAO, J. WEI, N. I. SARKAR, AND S. HUANG, E-mac: An evolutionary solution for collision avoidance in wireless ad hoc networks, Journal of Network and Computer Applications, 65 (2016), pp. 1–11. [18] L. ZHENDONG, 802.11 ac/ad: The next generation wlan technology standard, Mod- ern Science & Technology of Telecommunications, 12 (2010), p. 004. |
en_US |