Automatic Detection and Classification of Diabetic Retinopathy Stages in Retinal Image

Show simple item record

dc.contributor.author Labib, Md. Abrar
dc.contributor.author Irtiza, Saquib
dc.date.accessioned 2020-10-19T17:36:43Z
dc.date.available 2020-10-19T17:36:43Z
dc.date.issued 2018-11-15
dc.identifier.citation [1] T. Kauppi, V. Kalesnykiene, J.-K. Kamarainen, L. Lensu, I. Sorri, H. Uusitalo, H. K¨alvi¨ainen, and J. Pietil¨a, “Diaretdb0: Evaluation database and methodology for diabetic retinopathy algorithms,” Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland, vol. 73, 2006. [2] R. K¨alvi¨ainen and H. Uusitalo, “Diaretdb1 diabetic retinopathy database and evaluation protocol,” in Medical Image Understanding and Analysis, vol. 2007. Citeseer, 2007, p. 61. [3] E. Decencire, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, P. Gain, R. Ordonez, P. Massin, A. Erginay, B. Charton, and J.-C. Klein, “Feedback on a publicly distributed database: the messidor database,” Image Analysis & Stereology, vol. 33, no. 3, pp. 231–234, Aug. 2014. [Online]. Available: http://www.ias-iss.org/ojs/IAS/article/view/1155 [4] “Kaggle datasets: Diabetic retinopathy detection,” accessed: 2016-10-05. [Online]. Available: https://www.kaggle.com/c/diabetic-retinopathy-detection/data [5] C. Sinthanayothin, J. F. Boyce, T. H. Williamson, H. L. Cook, E. Mensah, S. Lal, and D. Usher, “Automated detection of diabetic retinopathy on digital fundus images,” Diabetic medicine, vol. 19, no. 2, pp. 105–112, 2002. [6] H. F. Jaafar, A. K. Nandi, and W. Al-Nuaimy, “Detection of exudates in retinal images using a pure splitting technique,” in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. IEEE, 2010, pp. 6745–6748. [7] C. I. S´anchez, R. Hornero, M. I. L´opez, M. Aboy, J. Poza, and D. Ab´asolo, “A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis,” Medical Engineering & Physics, vol. 30, no. 3, pp. 350–357, 2008. [8] X. Zhang, G. Thibault, E. Decenci`ere, B. Marcotegui, B. Lay¨, R. Danno, G. Cazuguel, G. Quellec, M. Lamard, P. Massin et al., “Exudate detection in color retinal images for mass screening of diabetic retinopathy,” Medical image analysis, vol. 18, no. 7, pp. 1026–1043, 2014. [9] A. Sopharak, B. Uyyanonvara, S. Barman, and T. H. Williamson, “Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods,” Computerized medical imaging and graphics, vol. 32, no. 8, pp. 720–727, 2008. [10] A. Osareh, B. Shadgar, and R. Markham, “A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images,” IEEE Trans- actions on Information Technology in Biomedicine, vol. 13, no. 4, pp. 535–545, 2009. [11] M. Garc´ıa, C. I. S´anchez, M. I. L´opez, D. Ab´asolo, and R. Hornero, “Neural network based detection of hard exudates in retinal images,” Computer Methods and programs in biomedicine, vol. 93, no. 1, pp. 9–19, 2009. [12] A. D. Fleming, S. Philip, K. A. Goatman, G. J. Williams, J. A. Olson, and P. F. Sharp, “Automated detection of exudates for diabetic retinopathy screening,” Physics in Medicine & Biology, vol. 52, no. 24, p. 7385, 2007. [13] M. Niemeijer, B. van Ginneken, S. R. Russell, M. S. Suttorp-Schulten, and M. D. Abramoff, “Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis,” Investigative ophthalmology & visual science, vol. 48, no. 5, pp. 2260– 2267, 2007. [14] A. D. Fleming, S. Philip, K. A. Goatman, J. A. Olson, and P. F. Sharp, “Auto- mated microaneurysm detection using local contrast normalization and local vessel detection,” IEEE transactions on medical imaging, vol. 25, no. 9, pp. 1223–1232, 2006. [15] T. Inoue, Y. Hatanaka, S. Okumura, C. Muramatsu, and H. Fujita, “Automated microaneurysm detection method based on eigenvalue analysis using hessian ma- trix in retinal fundus images,” in Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE. IEEE, 2013, pp. 5873–5876. [16] H. F. Jaafar, A. K. Nandi, and W. Al-Nuaimy, “Automated detection of red lesions from digital colour fundus photographs,” in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE, 2011, pp. 6232–6235. [17] B. Zhang, X. Wu, J. You, Q. Li, and F. Karray, “Detection of microaneurysms using multi-scale correlation coefficients,” Pattern Recognition, vol. 43, no. 6, pp. 2237–2248, 2010. [18] T. Walter, P. Massin, A. Erginay, R. Ordonez, C. Jeulin, and J.-C. Klein, “Auto- matic detection of microaneurysms in color fundus images,” Medical image anal- ysis, vol. 11, no. 6, pp. 555–566, 2007. [19] G. Quellec, M. Lamard, P. M. Josselin, G. Cazuguel, B. Cochener, and C. Roux, “Optimal wavelet transform for the detection of microaneurysms in retina pho- tographs.” IEEE Transactions on Medical Imaging, vol. 27, no. 9, pp. 1230–41, 2008. [20] I. Lazar and A. Hajdu, “Retinal microaneurysm detection through local rotating cross-section profile analysis,” IEEE transactions on medical imaging, vol. 32, no. 2, pp. 400–407, 2013. [21] M. Garc´ıa, M. I. L´opez, D. A´lvarez, and R. Hornero, “Assessment of four neural network based classifiers to automatically detect red lesions in retinal images,” Medical engineering & physics, vol. 32, no. 10, pp. 1085–1093, 2010. [22] C. I. S´anchez, R. Hornero, A. Mayo, and M. Garc´ıa, “Mixture model-based clus- tering and logistic regression for automatic detection of microaneurysms in retinal images,” in Medical Imaging 2009: Computer-Aided Diagnosis, vol. 7260. Inter- national Society for Optics and Photonics, 2009, p. 72601M. [23] A. Mizutani, C. Muramatsu, Y. Hatanaka, S. Suemori, T. Hara, and H. Fujita, “Automated microaneurysm detection method based on double ring filter in reti- nal fundus images,” in Medical Imaging 2009: Computer-Aided Diagnosis, vol. 7260. International Society for Optics and Photonics, 2009, p. 72601N. [24] M. Niemeijer, B. Van Ginneken, J. Staal, M. S. Suttorp-Schulten, and M. D. Abra`moff, “Automatic detection of red lesions in digital color fundus pho- tographs,” IEEE Transactions on medical imaging, vol. 24, no. 5, pp. 584–592, 2005. [25] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros et al., “Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs,” Jama, vol. 316, no. 22, pp. 2402–2410, 2016. [26] M. D. Abra`moff, Y. Lou, A. Erginay, W. Clarida, R. Amelon, J. C. Folk, and M. Niemeijer, “Improved automated detection of diabetic retinopathy on a pub- licly available dataset through integration of deep learning,” Investigative ophthal- mology & visual science, vol. 57, no. 13, pp. 5200–5206, 2016. [27] M. J. van Grinsven, B. van Ginneken, C. B. Hoyng, T. Theelen, and C. I. S´anchez, “Fast convolutional neural network training using selective data sampling: appli- cation to hemorrhage detection in color fundus images,” IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1273–1284, 2016. [28] H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, “Convo- lutional neural networks for diabetic retinopathy,” Procedia Computer Science, vol. 90, pp. 200–205, 2016. [29] M. Haloi, “Improved microaneurysm detection using deep neural networks,” arXiv preprint arXiv:1505.04424, 2015. [30] R. Gargeya and T. Leng, “Automated identification of diabetic retinopathy using deep learning,” Ophthalmology, vol. 124, no. 7, pp. 962–969, 2017. [31] “Transfer learning definition,” accessed: 2018-10-13. [Online]. Available: https://towardsdatascience.com/transfer-learning-using-differential- learning-rates-638455797f00 [32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR, vol. abs/1409.4842, 2014. [Online]. Available: http://arxiv.org/abs/1409.4842 [33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017. [Online]. Available: http://arxiv.org/abs/1704.04861 [34] “Mobilenet definition,” accessed: 2018-10-13. [Online]. Available: https://www.quora.com/What-is-MobileNet [35] C. I. S´anchez, M. Niemeijer, A. V. Dumitrescu, M. S. Suttorp-Schulten, M. D. Abramoff, and B. van Ginneken, “Evaluation of a computer-aided diagnosis sys- tem for diabetic retinopathy screening on public data,” Investigative ophthalmol- ogy & visual science, vol. 52, no. 7, pp. 4866–4871, 2011. [36] L. Seoud, T. Hurtut, J. Chelbi, F. Cheriet, and J. P. Langlois, “Red lesion de- tection using dynamic shape features for diabetic retinopathy screening,” IEEE transactions on medical imaging, vol. 35, no. 4, pp. 1116–1126, 2016. [37] B. Antal and A. Hajdu, “An ensemble-based system for automatic screening of diabetic retinopathy,” Knowledge-based systems, vol. 60, pp. 20–27, 2014. en_US
dc.identifier.uri http://hdl.handle.net/123456789/549
dc.description Supervised by Mr. A.B.M Ashikur Rahman Lecturer en_US
dc.description.abstract This paper summarizes the different imaging techniques and methodologies used to perform classification of the different stages of a disease called diabetic retinopathy. In particular, it focuses on deep learning techniques to perform such detection in the fundus images of the patient’s eye. Diabetic retinopathy is a progressive disease that causes the patient to lose eyesight if not diagnosed and treated at an early stage. Ophthalmologists usually diagnose the patient of this disease by screening the retinal fundus images to look for lesions. But the inaccuracy of such diagnosis together with the delay between diagnosis and treatment motivated researchers to automate this process of diagnosis. Using neural networks to train the system on a set of training images, it is possible to make systems that are more accurate and faster than human experts. en_US
dc.language.iso en en_US
dc.publisher Department of Computer Science and Engineering, Islamic University of Technology, Board Bazar, Gazipur, Bangladesh en_US
dc.title Automatic Detection and Classification of Diabetic Retinopathy Stages in Retinal Image en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics