dc.identifier.citation |
[1] T. Kauppi, V. Kalesnykiene, J.-K. Kamarainen, L. Lensu, I. Sorri, H. Uusitalo, H. K¨alvi¨ainen, and J. Pietil¨a, “Diaretdb0: Evaluation database and methodology for diabetic retinopathy algorithms,” Machine Vision and Pattern Recognition Research Group, Lappeenranta University of Technology, Finland, vol. 73, 2006. [2] R. K¨alvi¨ainen and H. Uusitalo, “Diaretdb1 diabetic retinopathy database and evaluation protocol,” in Medical Image Understanding and Analysis, vol. 2007. Citeseer, 2007, p. 61. [3] E. Decencire, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, P. Gain, R. Ordonez, P. Massin, A. Erginay, B. Charton, and J.-C. Klein, “Feedback on a publicly distributed database: the messidor database,” Image Analysis & Stereology, vol. 33, no. 3, pp. 231–234, Aug. 2014. [Online]. Available: http://www.ias-iss.org/ojs/IAS/article/view/1155 [4] “Kaggle datasets: Diabetic retinopathy detection,” accessed: 2016-10-05. [Online]. Available: https://www.kaggle.com/c/diabetic-retinopathy-detection/data [5] C. Sinthanayothin, J. F. Boyce, T. H. Williamson, H. L. Cook, E. Mensah, S. Lal, and D. Usher, “Automated detection of diabetic retinopathy on digital fundus images,” Diabetic medicine, vol. 19, no. 2, pp. 105–112, 2002. [6] H. F. Jaafar, A. K. Nandi, and W. Al-Nuaimy, “Detection of exudates in retinal images using a pure splitting technique,” in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. IEEE, 2010, pp. 6745–6748. [7] C. I. S´anchez, R. Hornero, M. I. L´opez, M. Aboy, J. Poza, and D. Ab´asolo, “A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis,” Medical Engineering & Physics, vol. 30, no. 3, pp. 350–357, 2008. [8] X. Zhang, G. Thibault, E. Decenci`ere, B. Marcotegui, B. Lay¨, R. Danno, G. Cazuguel, G. Quellec, M. Lamard, P. Massin et al., “Exudate detection in color retinal images for mass screening of diabetic retinopathy,” Medical image analysis, vol. 18, no. 7, pp. 1026–1043, 2014. [9] A. Sopharak, B. Uyyanonvara, S. Barman, and T. H. Williamson, “Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods,” Computerized medical imaging and graphics, vol. 32, no. 8, pp. 720–727, 2008. [10] A. Osareh, B. Shadgar, and R. Markham, “A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images,” IEEE Trans- actions on Information Technology in Biomedicine, vol. 13, no. 4, pp. 535–545, 2009. [11] M. Garc´ıa, C. I. S´anchez, M. I. L´opez, D. Ab´asolo, and R. Hornero, “Neural network based detection of hard exudates in retinal images,” Computer Methods and programs in biomedicine, vol. 93, no. 1, pp. 9–19, 2009. [12] A. D. Fleming, S. Philip, K. A. Goatman, G. J. Williams, J. A. Olson, and P. F. Sharp, “Automated detection of exudates for diabetic retinopathy screening,” Physics in Medicine & Biology, vol. 52, no. 24, p. 7385, 2007. [13] M. Niemeijer, B. van Ginneken, S. R. Russell, M. S. Suttorp-Schulten, and M. D. Abramoff, “Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis,” Investigative ophthalmology & visual science, vol. 48, no. 5, pp. 2260– 2267, 2007. [14] A. D. Fleming, S. Philip, K. A. Goatman, J. A. Olson, and P. F. Sharp, “Auto- mated microaneurysm detection using local contrast normalization and local vessel detection,” IEEE transactions on medical imaging, vol. 25, no. 9, pp. 1223–1232, 2006. [15] T. Inoue, Y. Hatanaka, S. Okumura, C. Muramatsu, and H. Fujita, “Automated microaneurysm detection method based on eigenvalue analysis using hessian ma- trix in retinal fundus images,” in Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE. IEEE, 2013, pp. 5873–5876. [16] H. F. Jaafar, A. K. Nandi, and W. Al-Nuaimy, “Automated detection of red lesions from digital colour fundus photographs,” in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE, 2011, pp. 6232–6235. [17] B. Zhang, X. Wu, J. You, Q. Li, and F. Karray, “Detection of microaneurysms using multi-scale correlation coefficients,” Pattern Recognition, vol. 43, no. 6, pp. 2237–2248, 2010. [18] T. Walter, P. Massin, A. Erginay, R. Ordonez, C. Jeulin, and J.-C. Klein, “Auto- matic detection of microaneurysms in color fundus images,” Medical image anal- ysis, vol. 11, no. 6, pp. 555–566, 2007. [19] G. Quellec, M. Lamard, P. M. Josselin, G. Cazuguel, B. Cochener, and C. Roux, “Optimal wavelet transform for the detection of microaneurysms in retina pho- tographs.” IEEE Transactions on Medical Imaging, vol. 27, no. 9, pp. 1230–41, 2008. [20] I. Lazar and A. Hajdu, “Retinal microaneurysm detection through local rotating cross-section profile analysis,” IEEE transactions on medical imaging, vol. 32, no. 2, pp. 400–407, 2013. [21] M. Garc´ıa, M. I. L´opez, D. A´lvarez, and R. Hornero, “Assessment of four neural network based classifiers to automatically detect red lesions in retinal images,” Medical engineering & physics, vol. 32, no. 10, pp. 1085–1093, 2010. [22] C. I. S´anchez, R. Hornero, A. Mayo, and M. Garc´ıa, “Mixture model-based clus- tering and logistic regression for automatic detection of microaneurysms in retinal images,” in Medical Imaging 2009: Computer-Aided Diagnosis, vol. 7260. Inter- national Society for Optics and Photonics, 2009, p. 72601M. [23] A. Mizutani, C. Muramatsu, Y. Hatanaka, S. Suemori, T. Hara, and H. Fujita, “Automated microaneurysm detection method based on double ring filter in reti- nal fundus images,” in Medical Imaging 2009: Computer-Aided Diagnosis, vol. 7260. International Society for Optics and Photonics, 2009, p. 72601N. [24] M. Niemeijer, B. Van Ginneken, J. Staal, M. S. Suttorp-Schulten, and M. D. Abra`moff, “Automatic detection of red lesions in digital color fundus pho- tographs,” IEEE Transactions on medical imaging, vol. 24, no. 5, pp. 584–592, 2005. [25] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros et al., “Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs,” Jama, vol. 316, no. 22, pp. 2402–2410, 2016. [26] M. D. Abra`moff, Y. Lou, A. Erginay, W. Clarida, R. Amelon, J. C. Folk, and M. Niemeijer, “Improved automated detection of diabetic retinopathy on a pub- licly available dataset through integration of deep learning,” Investigative ophthal- mology & visual science, vol. 57, no. 13, pp. 5200–5206, 2016. [27] M. J. van Grinsven, B. van Ginneken, C. B. Hoyng, T. Theelen, and C. I. S´anchez, “Fast convolutional neural network training using selective data sampling: appli- cation to hemorrhage detection in color fundus images,” IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1273–1284, 2016. [28] H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, “Convo- lutional neural networks for diabetic retinopathy,” Procedia Computer Science, vol. 90, pp. 200–205, 2016. [29] M. Haloi, “Improved microaneurysm detection using deep neural networks,” arXiv preprint arXiv:1505.04424, 2015. [30] R. Gargeya and T. Leng, “Automated identification of diabetic retinopathy using deep learning,” Ophthalmology, vol. 124, no. 7, pp. 962–969, 2017. [31] “Transfer learning definition,” accessed: 2018-10-13. [Online]. Available: https://towardsdatascience.com/transfer-learning-using-differential- learning-rates-638455797f00 [32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR, vol. abs/1409.4842, 2014. [Online]. Available: http://arxiv.org/abs/1409.4842 [33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017. [Online]. Available: http://arxiv.org/abs/1704.04861 [34] “Mobilenet definition,” accessed: 2018-10-13. [Online]. Available: https://www.quora.com/What-is-MobileNet [35] C. I. S´anchez, M. Niemeijer, A. V. Dumitrescu, M. S. Suttorp-Schulten, M. D. Abramoff, and B. van Ginneken, “Evaluation of a computer-aided diagnosis sys- tem for diabetic retinopathy screening on public data,” Investigative ophthalmol- ogy & visual science, vol. 52, no. 7, pp. 4866–4871, 2011. [36] L. Seoud, T. Hurtut, J. Chelbi, F. Cheriet, and J. P. Langlois, “Red lesion de- tection using dynamic shape features for diabetic retinopathy screening,” IEEE transactions on medical imaging, vol. 35, no. 4, pp. 1116–1126, 2016. [37] B. Antal and A. Hajdu, “An ensemble-based system for automatic screening of diabetic retinopathy,” Knowledge-based systems, vol. 60, pp. 20–27, 2014. |
en_US |