dc.identifier.citation |
[1] R. Hantoro, C. Budiono, R. K. Ketter, and N. A. Satwika, “Energy demand analysis and design of a hybrid power system in bawean islands, indonesia,” in MATEC Web of Conferences, vol. 164. EDP Sciences, 2018, p. 01038. [2] A. Ma, L. Farahdita et al., “Green economy and green jobs development in indonesia,” Proceeding of The URECOL, pp. 101–105, 2018. [3] S. Guerreiro and I. Botetzagias, “Empowering communities–the role of intermediary organisations in community renewable energy projects in indonesia,” Local Environment, vol. 23, no. 2, pp. 158–177, 2018. [4] E. Hariyono and S. Liliasari, “The characteristics of volcanic eruption in indonesia,” Volcanoes: Geological and Geophysical Setting, Theoretical Aspects and Numerical Modeling, Applications to Industry and Their Impact on the Human Health, p. 73, 2018. [5] S. M. Bina, S. Jalilinasrabady, H. Fujii, and N. A. Pambudi, “Classification of geothermal resources in indonesia by applying exergy concept,” Renewable and Sustainable Energy Reviews, vol. 93, pp. 499–506, 2018. [6] N. A. Pambudi, “Geothermal power generation in indonesia, a country within the ring of fire: Current status, future development and policy,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 2893–2901, 2018. [7] Alexander Richter, “The Top 10 Geothermal Countries 2018 - based on installed generation capacity (MWe) | Think GeoEnergy - Geothermal Energy News,” 2019. [Online]. Available: http://www.thinkgeoenergy.com/the-top-10- geothermal-countries-2018-based-on-installed-generation-capacity-mwe/ [8] World Resources Institute, “This Interactive Chart Explains World’s Top 10 Emitters, and How They’ve Changed,” 2017. [Online]. Available: https://www.wri.org/blog/2017/04/interactivechart- explains-worlds-top-10-emitters-and-how-theyvechanged% 0Ahttp://www.wri.org/blog/2017/04/interactive-chart-explains- 53 worlds-top-10-emitters -and-how-theyve-changed [9] K. W. Zhou, C. X. Gu, D. P. Ma, and H. Cao, “Real-time monitoring of acetaldehyde in air by cataluminescence-based gas sensor,” in Applied Mechanics and Materials, vol. 268. Trans Tech Publ, 2013, pp. 1594–1597. [10] D. Moya, C. Aldás, and P. Kaparaju, “Geothermal energy: Power plant technology and direct heat applications,” Renewable and Sustainable Energy Reviews, vol. 94, pp. 889–901, 2018. [11] R. DiPippo, Geothermal power plants: principles, applications, case studies and environmental impact. Butterworth-Heinemann, 2012. [12] N. A. Pambudi, R. Itoi, S. Jalilinasrabady, and K. Jaelani, “Exergy analysis and optimization of dieng single-flash geothermal power plant,” Energy Conversion and Management, vol. 78, pp. 405–411, 2014. [13] M. Maulidia, P. Dargusch, P. Ashworth, and F. Ardiansyah, “Rethinking renewable energy targets and electricity sector reform in indonesia: a private sector perspective,” Renewable and Sustainable Energy Reviews, vol. 101, pp. 231–247, 2019. [14] D. Ruliandi, “Geothermal power plant system performance prediction using artificial neural networks,” in 2015 IEEE Conference on Technologies for Sustainability (SusTech). IEEE, 2015, pp. 216–223. [15] K. S. Perera, Z. Aung, and W. L. Woon, “Machine learning techniques for supporting renewable energy generation and integration: a survey,” in International Workshop on Data Analytics for Renewable Energy Integration. Springer, 2014, pp. 81–96. [16] N. Qiu, “Special collection: Advances of exploration and utilization technology of geothermal resources in china,” 2019. [17] J. W. Lund, D. H. Freeston, and T. L. Boyd, “Direct utilization of geothermal energy 2010 worldwide review,” Geothermics, vol. 40, no. 3, pp. 159–180, 2011. [18] M. Mburu et al., “Geothermal energy utilization,” 001374011, 2014. [19] M. H. Dickson and M. Fanelli, Geothermal energy: utilization and technology. Routledge, 2013. [20] E. Patsa, S. Zarrouk, and D. Van Zyl, “The lindal diagram for mining engineering,” GRC Transactions, vol. 39, 2015. [21] E. Sugawara and H. Nikaido, “Properties of adeabc and adeijk efflux systems of acinetobacter baumannii compared with those of the acrab-tolc system of 54 escherichia coli,” Antimicrobial agents and chemotherapy, vol. 58, no. 12, pp. 7250–7257, 2014. [22] K. Fan and S. Nam, “Accelerating geothermal development in indonesia: A case study in the underutilization of geothermal energy,” Consilience, vol. 19, no. 1, pp. 103–129, 2018. [23] J. Hou, M. Cao, and P. Liu, “Development and utilization of geothermal energy in china: Current practices and future strategies,” Renewable energy, vol. 125, pp. 401–412, 2018. [24] S. K. Chaudhuri and D. R. Lovley, “Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells,” Nature biotechnology, vol. 21, no. 10, p. 1229, 2003. [25] L. Vargas, T. González, M. Gutiérrez, P. Guzmán, and M. Matus, “Geothermal energy in electricity markets and decarbonisation scenarios: The chilean case,” in IOP Conference Series: Earth and Environmental Science, vol. 188. IOP Publishing, 2018, p. 012035. [26] C. Dong, X. Dong, Q. Jiang, K. Dong, and G. Liu, “What is the probability of achieving the carbon dioxide emission targets of the paris agreement? evidence from the top ten emitters,” Science of the Total Environment, vol. 622, pp. 1294– 1303, 2018. [27] EBTKE, “Indonesia Peringkat 2 Produsen Listrik Panas Bumi Lampaui Filipina - Kementerian ESDM Republik Indonesia,” 2018. [Online]. Available: http://ebtke.esdm.go.id/post/2018/04/28/1948/indonesia.peringkat.2 [28] E. Cottrell, “Global distribution of active volcanoes,” in Volcanic Hazards, Risks and Disasters. Elsevier, 2015, pp. 1–16. [29] M. Masum and M. A. Akbar, “The pacific ring of fire is working as a home country of geothermal resources in the world,” in IOP Conference Series: Earth and Environmental Science, vol. 249. IOP Publishing, 2019, p. 012020. [30] C. Caudron, A. Bernard, S. Murphy, S. Inguaggiato, and H. Gunawan, “Volcanohydrothermal system and activity of sirung volcano (pantar island, indonesia),” Journal of volcanology and geothermal research, vol. 357, pp. 186–199, 2018. [31] S. F. Kennedy, “Indonesia’s energy transition and its contradictions: emerging geographies of energy and finance,” Energy research & social science, vol. 41, pp. 230–237, 2018. [32] A. Muharti, “Indonesia Miliki 13 Pembangkit Listrik Tenaga Panasbumi,” 2018. [Online]. Available: http://www.migasreview.com/post/1525757573/indonesiamiliki- 13-pembangkit-listrik-tenaga-panasbumi.html 55 [33] N. U. Blum, R. S. Wakeling, and T. S. Schmidt, “Rural electrification through village grids—assessing the cost competitiveness of isolated renewable energy technologies in indonesia,” Renewable and Sustainable Energy Reviews, vol. 22, pp. 482–496, 2013. [34] Ditjen EBTKEdan Badan geologi Kementerian ESDM, Buku Potensi Panas Bumi Indonesia Jilid 1. Jakarta: Kementerian Energi dan Sumber Daya Mineral, 2017, vol. 91. [35] V. M. Ambriz-Díaz, C. Rubio-Maya, J. J. P. Ibarra, S. R. G. González, and J. M. Patiño, “Analysis of a sequential production of electricity, ice and drying of agricultural products by cascading geothermal energy,” International Journal of Hydrogen Energy, vol. 42, no. 28, pp. 18 092–18 102, 2017. [36] N. Garapati, B. M. Adams, J. M. Bielicki, P. Schaedle, J. B. Randolph, T. H. Kuehn, and M. O. Saar, “A hybrid geothermal energy conversion technologya potential solution for production of electricity from shallow geothermal resources,” Energy Procedia, vol. 114, pp. 7107–7117, 2017. [37] Y. Chang, Y. Gu, L. Zhang, C. Wu, and L. Liang, “Energy and environmental implications of using geothermal heat pumps in buildings: An example from north china,” Journal of cleaner production, vol. 167, pp. 484–492, 2017. [38] A. Manzella, R. Bonciani, A. Allansdottir, S. Botteghi, A. Donato, S. Giamberini, A. Lenzi, M. Paci, A. Pellizzone, and D. Scrocca, “Environmental and social aspects of geothermal energy in italy,” Geothermics, vol. 72, pp. 232–248, 2018. [39] H. Yousefi and S. Ehara, “Geothermal power plant site selection using gis in sabalan area, nw iran,” Department of Earth Resources Engineering, Kyushu University, vol. 744, pp. 819–0395, 2007. [40] V. Suter et al., “The application of petroleum engineering to geothermal development,” in SPE California Regional Meeting. Society of Petroleum Engineers, 1979. [41] T. Abbas, A. A. Bazmi, A. W. Bhutto, and G. Zahedi, “Greener energy: Issues and challenges for pakistan-geothermal energy prospective,” Renewable and Sustainable Energy Reviews, vol. 31, pp. 258–269, 2014. [42] A. Bahadori, S. Zendehboudi, G. Zahedi et al., “A review of geothermal energy resources in australia: current status and prospects,” Renewable and Sustainable Energy Reviews, vol. 21, no. 0, pp. 29–34, 2013. [43] S. Indonesia, Indonesia population projection 2010-2035. Statistics Indonesia, 2013. 56 [44] M. H. Hasan, T. I. Mahlia, and H. Nur, “A review on energy scenario and sustainable energy in indonesia,” Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp. 2316–2328, 2012. [45] P. Meier, J. Randle, and J. Lawless, “Unlocking indonesia’s geothermal potential,” Prepared For the Asian Development Bank and World Bank, 2014. [46] S. Rezvanbehbahani, L. A. Stearns, A. Kadivar, J. D. Walker, and C. J. van der Veen, “Predicting the geothermal heat flux in greenland: a machine learning approach,” Geophysical Research Letters, vol. 44, no. 24, pp. 12–271, 2017. [47] A. Mellit, M. Benghanem, A. H. Arab, A. Guessoum et al., “Modelling of sizing the photovoltaic system parameters using artificial neural network,” in Proc. of IEEE, CCA, vol. 1, 2003, pp. 353–357. [48] H. Malik and S. Mishra, “Artificial neural network and empirical mode decomposition based imbalance fault diagnosis of wind turbine using turbsim, fast and simulink,” IET Renewable Power Generation, vol. 11, no. 6, pp. 889–902, 2016. [49] A. A. Alli and M. M. Alam, “Secoff-fciot: Machine learning based secure offloading in fog-cloud of things for smart city applications,” Internet of Things, vol. 7, p. 100070, 2019. [50] T. Afouras, J. S. Chung, and A. Zisserman, “The conversation: Deep audio-visual speech enhancement,” arXiv preprint arXiv:1804.04121, 2018. [51] J. M. Mulvey, “Machine learning and financial planning,” IEEE Potentials, vol. 36, no. 6, pp. 8–13, 2017. [52] R. Carbonneau, K. Laframboise, and R. Vahidov, “Application of machine learning techniques for supply chain demand forecasting,” European Journal of Operational Research, vol. 184, no. 3, pp. 1140–1154, 2008. [53] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “Iot security techniques based on machine learning: How do iot devices use ai to enhance security?” IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 41–49, 2018. [54] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis, “Machine learning applications in cancer prognosis and prediction,” Computational and structural biotechnology journal, vol. 13, pp. 8–17, 2015. [55] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A review of classification techniques,” Emerging artificial intelligence applications in computer engineering, vol. 160, pp. 3–24, 2007. [56] S. Newman, “Geothermal,” The Final Energy Crisis, pp. 233–238, 2017. 57 [57] P. Valdimarsson, “Geothermal power plant cycles and main components,” Short course on geothermal drilling, resource development and power plants, pp. 16– 22, 2011. [58] M. Yang, D. Tang, Y. Chen, G. Li, X. Zhang, and Y. Meng, “Determining initial formation temperature considering radial temperature gradient and axial thermal conduction of the wellbore fluid,” Applied Thermal Engineering, vol. 147, pp. 876–885, 2019. [59] Y. Zhao, Z. Feng, Z. Feng, D. Yang, and W. Liang, “Thm (thermo-hydromechanical) coupled mathematical model of fractured media and numerical simulation of a 3d enhanced geothermal system at 573 k and buried depth 6000–7000 m,” Energy, vol. 82, pp. 193–205, 2015. [60] M. A. Boles and Y. A. Cengel, Thermodynamics: an engineering approach. McGraw-Hill, 1989. [61] A. Najafabadi, “Geothermal power plant condensers in the world,” in Proceeding World Geothermal Congress 2015. Melbourne Australia, 2015. |
en_US |