dc.identifier.citation |
[1] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," nature, vol. 424, p. 824, 2003. [2] Z. Han, L. Liu, and E. Forsberg, "Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons," Optics communications, vol. 259, pp. 690-695, 2006. [3] Z. Kang and G. P. Wang, "Coupled metal gap waveguides as plasmonic wavelength sorters," Optics Express, vol. 16, pp. 7680-7685, 2008. [4] D. K. Gramotnev and S. I. Bozhevolnyi, "Nanofocusing of electromagnetic radiation," Nature Photonics, vol. 8, p. 13, 2014. [5] V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, et al., "Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas," Nano letters, vol. 15, pp. 8148-8154, 2015. [6] R. Kirchain and L. Kimerling, "A roadmap for nanophotonics," Nature Photonics, vol. 1, p. 303, 2007. [7] H. Lu, X. Liu, G. Wang, and D. Mao, "Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency," Nanotechnology, vol. 23, p. 444003, 2012. [8] H. Wang, J. Yang, J. Zhang, J. Huang, W. Wu, D. Chen, et al., "Tunable band-stop plasmonic waveguide filter with symmetrical multiple-teeth-shaped structure," Optics letters, vol. 41, pp. 1233-1236, 2016. [9] J. Tian, S. Yu, W. Yan, and M. Qiu, "Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface," Applied Physics Letters, vol. 95, p. 013504, 2009. [10] S. Bahadori-Haghighi, R. Ghayour, and M. H. Sheikhi, "All-Optical Cross-Bar Switch Based on a Low-Loss Suspended Graphene Plasmonic Coupler," Plasmonics, vol. 14, pp. 447-456, 2019. [11] N. Gogoi and P. P. Sahu, "All-optical tunable power splitter based on a surface plasmonic two-mode interference waveguide," Applied optics, vol. 57, pp. 2715-2719, 2018. [12] N. Nozhat and N. Granpayeh, "Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits," Optics Communications, vol. 284, pp. 3449-3455, 2011. [13] Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, et al., "A plasmonic splitter based on slot cavity," Optics Express, vol. 19, pp. 13831-13838, 2011. [14] Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, et al., "High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity," Applied Physics A, vol. 125, p. 13, 2019. [15] Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, et al., "Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator," Sensors, vol. 18, p. 116, 2018. [16] M. Butt, S. Khonina, and N. Kazanskiy, "Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing," Journal of Modern Optics, vol. 65, pp. 1135-1140, 2018. [17] Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, et al., "Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit," Nature communications, vol. 4, p. 2381, 2013. [18] H. Wang, "Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations," Scientific reports, vol. 8, p. 9589, 2018. [19] O. Daneshmandi, A. Alighanbari, and A. Gharavi, "Characteristics of new hybrid plasmonic Bragg reflectors based on sinusoidal and triangular gratings," Plasmonics, vol. 10, pp. 233-239, 2015. 74 [20] A. Hosseini and Y. Massoud, "A low-loss metal-insulator-metal plasmonic bragg reflector," Optics express, vol. 14, pp. 11318-11323, 2006. [21] J.-Q. Liu, L.-L. Wang, M.-D. He, W.-Q. Huang, D. Wang, B. Zou, et al., "A wide bandgap plasmonic Bragg reflector," Optics Express, vol. 16, pp. 4888-4894, 2008. [22] C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, et al., "All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale," Nature Photonics, vol. 9, p. 525, 2015. [23] Q. Gan, Y. Gao, and F. J. Bartoli, "Vertical plasmonic Mach-Zehnder interferometer for sensitive optical sensing," Optics express, vol. 17, pp. 20747-20755, 2009. [24] Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, "Plasmonic Mach–Zehnder interferometer for ultrasensitive on-chip biosensing," ACS nano, vol. 5, pp. 9836-9844, 2011. [25] J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nature photonics, vol. 1, p. 319, 2007. [26] J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," Journal of Lightwave Technology, vol. 24, pp. 201-229, 2006. [27] D. Liu, J. Wang, F. Zhang, Y. Pan, J. Lu, and X. Ni, "Tunable plasmonic band-pass filter with dual side-coupled circular ring resonators," Sensors, vol. 17, p. 585, 2017. [28] Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, "Broadband coupler between silicon waveguide and hybrid plasmonic waveguide," Optics express, vol. 18, pp. 13173-13179, 2010. [29] M. Alam, J. Aitchison, and M. Mojahedi, "Polarization-independent hybrid plasmonic coupler for a silicon on insulator platform," Optics letters, vol. 37, pp. 3417-3419, 2012. [30] F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, "Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides," Applied Physics Letters, vol. 100, p. 241105, 2012. [31] X. Gao, L. Zhou, X. Y. Yu, W. P. Cao, H. O. Li, H. F. Ma, et al., "Ultra-wideband surface plasmonic Y-splitter," Optics express, vol. 23, pp. 23270-23277, 2015. [32] F. Lou, D. Dai, and L. Wosinski, "Ultracompact polarization beam splitter based on a dielectric–hybrid plasmonic–dielectric coupler," Optics letters, vol. 37, pp. 3372-3374, 2012. [33] K.-W. Chang and C.-C. Huang, "Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide," Scientific reports, vol. 6, p. 19609, 2016. [34] S. A. Maier, Plasmonics: fundamentals and applications: Springer Science & Business Media, 2007. [35] T. Wu, Y. Liu, Z. Yu, Y. Peng, C. Shu, and H. Ye, "The sensing characteristics of plasmonic waveguide with a ring resonator," Optics express, vol. 22, pp. 7669-7677, 2014. [36] T. Srivastava, R. Das, and R. Jha, "Highly sensitive plasmonic temperature sensor based on photonic crystal surface plasmon waveguide," Plasmonics, vol. 8, pp. 515-521, 2013. [37] M. Y. Azab, M. F. O. Hameed, and S. Obayya, "Temperature Sensors Based on Plasmonic Photonic Crystal Fiber," in Computational Photonic Sensors, ed: Springer, 2019, pp. 179-201. [38] A. Tittl, H. Giessen, and N. Liu, "Plasmonic gas and chemical sensing," Nanophotonics, vol. 3, pp. 157-180, 2014. [39] J. M. Bingham, J. N. Anker, L. E. Kreno, and R. P. Van Duyne, "Gas sensing with high-resolution localized surface plasmon resonance spectroscopy," Journal of the American Chemical Society, vol. 132, pp. 17358-17359, 2010. [40] A. G. Brolo, "Plasmonics for future biosensors," Nature Photonics, vol. 6, p. 709, 2012. [41] W.-C. Law, K.-T. Yong, A. Baev, and P. N. Prasad, "Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement," ACS nano, vol. 5, pp. 4858-4864, 2011. [42] R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," nature photonics, vol. 2, p. 496, 2008. [43] M. Rattier, H. Benisty, R. P. Stanley, J.-F. Carlin, R. Houdré, U. Oesterle, et al., "Toward ultrahigh-efficiency aluminum oxide microcavity light-emitting diodes: Guided mode extraction 75 by photonic crystals," IEEE Journal of selected topics in quantum electronics, vol. 8, pp. 238-247, 2002. [44] J. Wierer, D. Kellogg, and N. Holonyak Jr, "Tunnel contact junction native-oxide aperture and mirror vertical-cavity surface-emitting lasers and resonant-cavity light-emitting diodes," Applied physics letters, vol. 74, pp. 926-928, 1999. [45] A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, et al., "High-speed plasmonic phase modulators," Nature Photonics, vol. 8, p. 229, 2014. [46] Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano letters, vol. 5, pp. 1726-1729, 2005. [47] H. Fischer and O. J. Martin, "Engineering the optical response of plasmonic nanoantennas," Optics express, vol. 16, pp. 9144-9154, 2008. [48] V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic nanostructure design for efficient light coupling into solar cells," Nano letters, vol. 8, pp. 4391-4397, 2008. [49] C. Min and G. Veronis, "Absorption switches in metal-dielectric-metal plasmonic waveguides," Optics Express, vol. 17, pp. 10757-10766, 2009. [50] X. Lu, R. Wan, and T. Zhang, "Metal-dielectric-metal based narrow band absorber for sensing applications," Optics express, vol. 23, pp. 29842-29847, 2015. [51] A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano letters, vol. 6, pp. 1822-1826, 2006. [52] H. Liu, Y. Gao, B. Zhu, G. Ren, and S. Jian, "A T-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators," Optics Communications, vol. 334, pp. 164-169, 2015. [53] G. Wang, H. Lu, X. Liu, D. Mao, and L. Duan, "Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime," Optics Express, vol. 19, pp. 3513-3518, 2011. [54] E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," science, vol. 311, pp. 189-193, 2006. [55] H. A. Atwater, "The promise of plasmonics," Sci. Am, vol. 296, pp. 56-62, 2007. [56] E. Ferreiro-Vila, J. B. González-Díaz, R. Fermento, M. U. González, A. García-Martín, J. M. García-Martín, et al., "Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures," Physical review B, vol. 80, p. 125132, 2009. [57] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials," Laser & Photonics Reviews, vol. 4, pp. 795-808, 2010. [58] M. G. Blaber, M. D. Arnold, and M. J. Ford, "A review of the optical properties of alloys and intermetallics for plasmonics," Journal of Physics: Condensed Matter, vol. 22, p. 143201, 2010. [59] A. Ciattoni, C. Rizza, and E. Palange, "All-optical active plasmonic devices with memory and power-switching functionalities based on ε-near-zero nonlinear metamaterials," Physical Review A, vol. 83, p. 043813, 2011. [60] G. V. Naik and A. Boltasseva, "A comparative study of semiconductor-based plasmonic metamaterials," Metamaterials, vol. 5, pp. 1-7, 2011. [61] A. Grigorenko, M. Polini, and K. Novoselov, "Graphene plasmonics," Nature photonics, vol. 6, p. 749, 2012. [62] I. Tokarev and S. Minko, "Tunable plasmonic nanostructures from noble metal nanoparticles and stimuli-responsive polymers," Soft Matter, vol. 8, pp. 5980-5987, 2012. [63] H. Kim, M. Osofsky, S. Prokes, O. Glembocki, and A. Piqué, "Optimization of Al-doped ZnO films for low loss plasmonic materials at telecommunication wavelengths," Applied Physics Letters, vol. 102, p. 171103, 2013. [64] L. Gao, Y. Huo, J. S. Harris, and Z. Zhou, "Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide," IEEE Photonics Technology Letters, vol. 25, pp. 2081-2084, 2013. 76 [65] S. Zuccon, P. Zuppella, M. Cristofani, S. Silvestrini, A. J. Corso, M. Maggini, et al., "Functional palladium metal films for plasmonic devices: an experimental proof," Journal of Optics, vol. 16, p. 055001, 2014. [66] W. Cao, J. Li, H. Chen, and J. Xue, "Transparent electrodes for organic optoelectronic devices: a review," Journal of Photonics for Energy, vol. 4, p. 040990, 2014. [67] Y. Zhong, S. D. Malagari, T. Hamilton, and D. M. Wasserman, "Review of mid-infrared plasmonic materials," Journal of Nanophotonics, vol. 9, p. 093791, 2015. [68] D. Y. Fedyanin, D. I. Yakubovsky, R. V. Kirtaev, and V. S. Volkov, "Ultralow-loss CMOS copper plasmonic waveguides," Nano letters, vol. 16, pp. 362-366, 2015. [69] Z. Wei, X. Li, J. Yin, R. Huang, Y. Liu, W. Wang, et al., "Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths," Optics express, vol. 24, pp. 14344-14351, 2016. [70] J. Song, L. Zhang, Y. Xue, Q. Y. S. Wu, F. Xia, C. Zhang, et al., "Efficient excitation of multiple plasmonic modes on three-dimensional graphene: An unexplored dimension," ACS Photonics, vol. 3, pp. 1986-1992, 2016. [71] W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, et al., "Silicon–organic and plasmonic–organic hybrid photonics," ACS Photonics, vol. 4, pp. 1576-1590, 2017. [72] Y. Ding, X. Guan, X. Zhu, H. Hu, S. I. Bozhevolnyi, L. K. Oxenløwe, et al., "Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides," Nanoscale, vol. 9, pp. 15576-15581, 2017. [73] C. Hanske, M. N. Sanz‐Ortiz, and L. M. Liz‐Marzán, "Silica‐Coated Plasmonic Metal Nanoparticles in Action," Advanced Materials, vol. 30, p. 1707003, 2018. [74] M. Xia, "2D materials-coated plasmonic structures for SERS applications," Coatings, vol. 8, p. 137, 2018. [75] R. Secondo, D. Fomra, N. Izyumskaya, V. Avrutin, J. Hilfiker, A. Martin, et al., "Reliable modeling of ultrathin alternative plasmonic materials using spectroscopic ellipsometry," Optical Materials Express, vol. 9, pp. 760-770, 2019. [76] L. D. Landau, J. Bell, M. Kearsley, L. Pitaevskii, E. Lifshitz, and J. Sykes, Electrodynamics of continuous media vol. 8: elsevier, 2013. [77] D. P. Edward and I. Palik, "Handbook of optical constants of solids," ed: Academic, Orlando, Florida, 1985. [78] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied optics, vol. 37, pp. 5271-5283, 1998. [79] D. Barchiesi and T. Grosges, "Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth," Journal of Nanophotonics, vol. 8, p. 083097, 2014. [80] M. G. Blaber, M. D. Arnold, and M. J. Ford, "Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver," The Journal of Physical Chemistry C, vol. 113, pp. 3041-3045, 2009. [81] J. B. Khurgin and A. Boltasseva, "Reflecting upon the losses in plasmonics and metamaterials," MRS bulletin, vol. 37, pp. 768-779, 2012. [82] W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature photonics, vol. 1, p. 224, 2007. [83] R. Cohen, G. Cody, M. Coutts, and B. Abeles, "Optical properties of granular silver and gold films," Physical Review B, vol. 8, p. 3689, 1973. [84] Y. Yagil and G. Deutscher, "Transmittance of thin metal films near the percolation threshold," Thin Solid Films, vol. 152, pp. 465-471, 1987. [85] F. Abelès, Y. Borensztein, and T. López-Rios, "Optical properties of discontinuous thin films and rough surfaces of silver," in Advances in Solid State Physics, ed: Springer, 1984, pp. 93-117. [86] K. Fuchs, "The conductivity of thin metallic films according to the electron theory of metals," in Mathematical Proceedings of the Cambridge Philosophical Society, 1938, pp. 100-108. 77 [87] F. Warkusz, "Electrical and mechanical properties of thin metal films: size effects," Progress in Surface Science, vol. 10, pp. 287-382, 1980. [88] E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results," Optics Communications, vol. 6, pp. 185-187, 1972. [89] D.-L. Hornauer, "Light scattering experiments on silver films of different roughness using surface plasmon excitation," Optics Communications, vol. 16, pp. 76-79, 1976. [90] Y.-H. Chou, C.-J. Chang, T.-R. Lin, and T.-C. Lu, "Surface plasmon polariton nanolasers: Coherent light sources for new applications," Chinese Physics B, vol. 27, p. 114208, 2018. [91] W. Campbell and U. Thomas, "Films on freshly abraded copper surfaces," Nature, vol. 142, p. 253, 1938. [92] G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, "Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography," Nano Letters, vol. 7, pp. 1947-1952, 2007. [93] H. Bennett, R. Peck, D. Burge, and J. Bennett, "Formation and growth of tarnish on evaporated silver films," Journal of applied physics, vol. 40, pp. 3351-3360, 1969. [94] D. Burge, J. Bennett, R. Peck, and H. Bennett, "Growth of surface films on silver," Surface science, vol. 16, pp. 303-320, 1969. [95] G. Bemski, "Recombination properties of gold in silicon," Physical Review, vol. 111, p. 1515, 1958. [96] L. Yau and C. Sah, "Measurement of trapped‐minority‐carrier thermal emission rates from Au, Ag, and Co traps in silicon," Applied Physics Letters, vol. 21, pp. 157-158, 1972. [97] J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, "Silicon-based plasmonics for on-chip photonics," IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, pp. 295-306, 2010. [98] A. Hryciw, Y. C. Jun, and M. L. Brongersma, "Plasmonics: Electrifying plasmonics on silicon," Nature materials, vol. 9, p. 3, 2010. [99] R. Soref, J. Hendrickson, and J. W. Cleary, "Mid-to long-wavelength infrared plasmonic-photonics using heavily doped n-Ge/Ge and n-GeSn/GeSn heterostructures," Optics express, vol. 20, pp. 3814-3824, 2012. [100] B. S. Williams, "Terahertz quantum-cascade lasers," Nature photonics, vol. 1, p. 517, 2007. [101] T. Minami, "Transparent conducting oxide semiconductors for transparent electrodes," Semiconductor science and technology, vol. 20, p. S35, 2005. [102] G. J. Exarhos and X.-D. Zhou, "Discovery-based design of transparent conducting oxide films," Thin solid films, vol. 515, pp. 7025-7052, 2007. [103] L. Wang, C. Clavero, K. Yang, E. Radue, M. Simons, I. Novikova, et al., "Bulk and surface plasmon polariton excitation in RuO 2 for low-loss plasmonic applications in NIR," Optics express, vol. 20, pp. 8618-8628, 2012. [104] J. Cleary, R. Peale, D. Shelton, G. Boreman, C. Smith, M. Ishigami, et al., "IR permittivities for silicides and doped silicon," JOSA B, vol. 27, pp. 730-734, 2010. [105] K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, and K. Kim, "A roadmap for graphene," nature, vol. 490, pp. 192-200, 2012. [106] M. G. Saber, Z. Xing, D. Patel, E. El-Fiky, N. Abadía, Y. Wang, et al., "A CMOS compatible ultracompact silicon photonic optical add-drop multiplexer with misaligned sidewall Bragg gratings," IEEE Photonics Journal, vol. 9, pp. 1-10, 2017. [107] D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, et al., "Roadmap on silicon photonics," Journal of Optics, vol. 18, p. 073003, 2016. [108] R. Soref, "The past, present, and future of silicon photonics," IEEE Journal of selected topics in quantum electronics, vol. 12, pp. 1678-1687, 2006. [109] A. Hryciw, "Jun. YC & Brongersma, ML Electrifying plasmonics on silicon," Nature Mater, vol. 9, pp. 3-4, 2010. 78 [110] R. Soref, "Mid-infrared photonics in silicon and germanium," Nature photonics, vol. 4, p. 495, 2010. [111] M. Balkanski, A. Aziza, and E. Amzallag, "Infrared Absorption in Heavily Doped n‐Type Si," physica status solidi (b), vol. 31, pp. 323-330, 1969. [112] D. K. Schroder, R. N. Thomas, and J. C. Swartz, "Free carrier absorption in silicon," IEEE Journal of solid-state circuits, vol. 13, pp. 180-187, 1978. [113] F. A. Trumbore, "Solid solubilities of impurity elements in germanium and silicon," Bell System Technical Journal, vol. 39, pp. 205-233, 1960. [114] H. Barber, "Effective mass and intrinsic concentration in silicon," Solid-State Electronics, vol. 10, pp. 1039-1051, 1967. [115] M. Shahzad, G. Medhi, R. E. Peale, W. R. Buchwald, J. W. Cleary, R. Soref, et al., "Infrared surface plasmons on heavily doped silicon," Journal of Applied Physics, vol. 110, p. 123105, 2011. [116] M. G. Saber, N. Abadía, and D. V. Plant, "CMOS compatible all-silicon TM pass polarizer based on highly doped silicon waveguide," Optics express, vol. 26, pp. 20878-20887, 2018. [117] Z. Qi, G. Hu, L. Li, B. Yun, R. Zhang, and Y. Cui, "Design and analysis of a compact soi-based aluminum/highly doped p-type silicon hybrid plasmonic modulator," IEEE Photonics Journal, vol. 8, pp. 1-11, 2016. [118] Y.-B. Chen and Z. Zhang, "Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces," Journal of Physics D: Applied Physics, vol. 41, p. 095406, 2008. [119] M. Van Exter and D. Grischkowsky, "Carrier dynamics of electrons and holes in moderately doped silicon," Physical Review B, vol. 41, p. 12140, 1990. [120] S. Basu, B. J. Lee, and Z. Zhang, "Near-field radiation calculated with an improved dielectric function model for doped silicon," Journal of Heat Transfer, vol. 132, p. 023302, 2010. [121] G. Masetti, M. Severi, and S. Solmi, "Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon," IEEE Transactions on electron devices, vol. 30, pp. 764-769, 1983. [122] P. P. Silvester and R. L. Ferrari, Finite elements for electrical engineers: Cambridge university press, 1996. [123] K. J. Binns, C. Trowbridge, and P. Lawrenson, The analytical and numerical solution of electric and magnetic fields: Wiley, 1992. [124] P. Dular, W. Legros, H. De Gersem, and K. Hameyer, "Floating potentials in various electromagnetic problems using the finite element method," in Proceedings of 4th International workshop on Electric and Magnetic fields, 1998, pp. 409-414. [125] S. Zou, F. Wang, R. Liang, L. Xiao, and M. Hu, "A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: A review," IEEE Sensors Journal, vol. 15, pp. 646-650, 2014. [126] D. Nobili, S. Solmi, A. Parisini, M. Derdour, A. Armigliato, and L. Moro, "Precipitation, aggregation, and diffusion in heavily arsenic-doped silicon," Physical Review B, vol. 49, p. 2477, 1994. [127] S. Naghizadeh and Ş. E. Kocabaş, "Guidelines for designing 2D and 3D plasmonic stub resonators," JOSA B, vol. 34, pp. 207-217, 2017. [128] X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, "Refractive index sensor based on fano resonances in plasmonic waveguide with dual side-coupled ring resonators," Photonic Sensors, vol. 8, pp. 367-374, 2018. [129] Z. Tu, D. Gao, M. Zhang, and D. Zhang, "High-sensitivity complex refractive index sensing based on Fano resonance in the subwavelength grating waveguide micro-ring resonator," Optics express, vol. 25, pp. 20911-20922, 2017. |
en_US |