dc.identifier.citation |
[1]. W. W. chumnankul, G.M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B.S.Y. Ung, J. Balakrishnan, B.W.H. Ng, B. Ferguson, S.P. Mickan, B.M. Fischer and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95 (8) 1528–1558, (2007). [2]. M. R. Hasan, M. S. Anower, M. A. Islam, and S. M. A. Razzak, “Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance,” Appl. Opt. 55, 4145-4152, (2016). [3]. J. Balakrishnan, B.M. Fischer and D. Abbott, “Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy,” Appl. Opt. 48 (12) 2262–2266, (2009). [4]. A. Lee, W.M., Q. Qin and S. Kumar, “Real-time terahertz imaging over a standoff distance (>25 meters),” Appl. Phys. Lett. 89, (14), p.141125(1–3), (2006). [5]. S. Fathololoumi, E. Dupont and C. W. I. Chan, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Exp. 20, (4), p. 3866, (2012). [6]. F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, (5), pp. 278–347, (2010). [7]. M. R. Hasan, S. Akter, T. Khatun, A. A. Rifat and M. S. Anower, “Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance,” Optical Engineering, 56(4), 043108 (2017). [8]. M. Skorobogatiy and A. upuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90 (11) (2007) 113514. [9]. G. Zhao, M.T. Mors and T. Wenckebach, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Amer. B 19 (6), 1476–1479, (2007). [10]. A. Kawsar, B. K. Paul, S. Chowdhury, S. Sen, M. I. Islam, M. S. Islam, M. R. Hasan and S. Asaduzzaman, “Design of a single-mode photonic crystal fibre with ultra-low material loss and large effective mode area in THz regime,” IET Optoelectron., Vol. 11 Iss. 6, pp. 265-271, (2017). [11]. M. A. Habib, M. S. Anower, and M. R. Hasan, “Ultrahigh Birefringence and Extremely Low Loss Slotted-core Microstructure Fiber in Terahertz Regime,” Current Optics and Photonics, Vol. 1, No. 6, pp. 567-572, (2017). [12]. M. A. Habib and M. S. Anower, “Low Loss Highly Birefringent Porous Core Fiber for Single Mode Terahertz Wave Guidance,” Current Optics and Photonics, Vol. 2, No. 3 pp. 215-220, (2018). [13]. M. S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M. R. Islam, B. W.-H. Ng, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Applied Optics, Vol. 57, Issue 4, pp. 666-672, (2018). [14]. J. Sultana, M. S. Islam, M. Faisal, M. R. Islam a, Brian W.-H. Ng, H. Ebendorff-Heidepriem and D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Optics Communications, Volume 407, Pages 92-96, (2018). [15]. B. K. Paul, M. S. Islam, S. Sen, K. Ahmed and M. S. Uddin, “Low material loss and dispersion flattened fiber for single mode THz-wave transmission applications,” Results in Physics 11 638–642, (2018). [16]. S. Rana, A. S. Rakin, M. R. Hasan, M. S. Reza, R. Leonhardt, D. Abbott and H. Subbaraman, “Low loss and flat dispersion Kagome photonic crystal fiber in the terahertz regime,” Optics Communications, 410 452–456, (2018). 69 [17]. K. Ahmed, S. Chowdhury, B.K. Paul, M.S. Islam, S. Sen, M. I. Islam, and S. Asaduzzaman, “Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance,” Applied optics, Vol. 56, pp.3477-3483, (2017). [18]. J. Sultana, M. S Islam, J. Atai, M.R. Islam and D. Abbott, “Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission,” Optical Engineering, Vol. 56, PP. 076114, (2017). [19]. M. S. Islam, J. Sultana, A. Dinovitser, B.W.H.Ng, and D. Abbott, “A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Optics Communications, Vol. 413, pp.242-248, (2018). [20]. M. Faisal, and M.S Islam, “Extremely high birefringent terahertz fiber using a suspended elliptic core with slotted air holes,” Applied optics, Vol. 57, pp.3340-3347, (2018). [21]. S. Asaduzzaman, K. Ahmed, T. Bhuyan, and T. Farah, Hybrid photonic crystal fiber in chemical sensing, Springer Plus 5, 748 ( 2016). [22]. M. F. H. Arif, K. Ahmed, S. Asaduzzaman, and M. A. K. Azad, “Design and optimization of photonic crystal fiber for liquid sensing applications,” Photon. Sens. 6, 279–288,( 2016). [23]. J. Sultana, M. Islam, K. Ahmed, A. Dinovitser, Brian W.-H. NG, and . D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Applied Optics, Vol. 57, No. 10 ,1, (2018). [24]. B. K. Paul, K. Ahmed, S. Asaduzzaman, and M. Islam, “Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis,” Sensing and Bio-Sensing Research, Volume 12, ( 2017). [25]. H. Ademgil, and S. Haxha, “PCF Based Sensor with High Sensitivity, High Birefringence and Low Confinement Losses for Liquid Analyte Sensing Applications,” Sensors, MDPI, 31833–31842, (2015). [26]. M. Islam, J. Sultana, A. A. Rifat, Dinovitser. A., Brian W-H N., and Abbott. D. , “Terahertz Sensing in a Hollow Core Photonic Crystal Fiber,” IEEE SENSORS JOURNAL, VOL. 18, NO. 10, (2018) [27]. L. Peng, “Absorption and emission properties of photonic crystals and Metamaterials”, UMI Number: 1446140, (2007). [28]. J. D. Joannopoulos, S. G. Johnson, N. Joshua, D. R. Meade, “Photonic Crystals- Molding the flow of light”, Second Edition, Princeton University Press, (2008). [29]. L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” OPTICS EXPRESS,Vol. 17, No. 3, (2009). [30]. G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, 1991). [31]. J. M. López-Higuera, L. R. Cobo, A. Q. Incera, and A. Cobo, “Fiber optic sensors in structural health monitoring,” J. Lightwave Technol. 29, 587–608, (2011). [32]. D. R. Walt, “Fibre optic microarrays,” Chem. Soc. Rev. 39, 38–50, (2010). [33]. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556, (1994). [34]. K. Eshraghian, “SoC emerging technologies,” Proc. IEEE 94, 1197–1213, (2006). [35]. J. S. Melinger, S. S. Harsha, N. Laman, and D. Grischkowsky, “Guided-wave terahertz spectroscopy of molecular solids [Invited],” J. Opt. Soc. Am. B 26, A79–A89, (2009). [36]. M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18, S601–S618, (2006). [37]. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal 70 wires,” Appl. Phys. Lett. 97, 176805, (2006). [38]. V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on a parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100, 231108, (2012). [39]. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863, (2000). [40]. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848, (2001). [41]. T. I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094, (2004). [42]. T. I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904, (2005). [43]. A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett. 18, 428–430, (2008). [44]. T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113, (2006). [45]. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111, (2007). [46]. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433, (1999). [47]. R. Mendis, “First broadband experimental study of planar THz waveguides,” Ph.D. thesis (Oklahoma State University, 2001). [48]. Y. Xu and R. G. Bosisio, “A comprehensive study on the planar type of Goubau line for millimetre and submillimetre wave integrated circuits,” IET Microw. Antennas Propag. 1, 681-687 (2007). [49]. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009). [50]. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse- electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26, A6–A13 (2009). [51]. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005). [52]. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004). [53]. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007). [54]. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “THz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004). [55]. B. M. Fischer, “Broadband THz time-domain spectroscopy of biomolecules,” Ph.D. thesis (University of Freiburg, 2005). [56]. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006). [57]. J. Balakrishnan, B. M. Fischer, and D. Abbott, “Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy,” Appl. Opt. 48, 2262–2266 (2009). 71 [58]. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011). [59]. F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic-bandgap fibre designed for zero dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000). [60]. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36, 666–668 (2011). [61]. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Sci. 36, 467–495 (2006). [62]. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008). [63]. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002). [64]. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008). [65]. J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004). [66]. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Pub. 4, 09004 (2009). [67]. K. J. Rowland, “Guiding light in low-index media via multilayer waveguides,” Ph.D. thesis (The University of Adelaide, 2010). [68]. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [69]. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998). [70]. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002). [71]. T. Katagiri, Y. Matsuura, and M. Miyagi, “Photonic bandgap fiber with a silica core and multilayer dielectric cladding,” Opt. Lett. 29, 557–559 (2004). [72]. F. Couny, F. Benabid, and P. S. Light, “Large-pitch Kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006). [73]. A. Argyros and J. Pla, “Hollow-core polymer fibers with a Kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007). [74]. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice largepitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008). [75]. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Anti resonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008). [76]. K. J. Rowland, S. Afshar V., and T. M. Monro, “Bandgaps and anti resonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008). [77]. K. J. Rowland, S. Afshar V., A. Stolyarov, Y. Fink, and T. M. Monro, “Bragg waveguides with low-index liquid cores,” Opt. Express 20, 48–62 (2012). [78]. T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding THz waveguide,” Proc. SPIE 5135, 70–77 (2003). [79]. M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire 72 metamaterial,” Opt. Express 17, 14851–14864 (2009). [80]. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004). [81]. T. Ito, Y. Matsuura, M. Miyagi, H. Minarnide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007). [82]. O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011). [83]. S. Atakaramians, S. Afshar, T. M. Monro and Derek Abbott, “Terahertz dielectric waveguides,” Advances in Optics and Photonics 5, 169–215 (2013). [84]. Y. F. Geng, X. L. Tan, K. Zhong, P. Wang, and J. Q. Yao, “Low loss plastic terahertz photonic band-gap fibers,” Chin. Phys. Lett. 25, 3961–3963 (2008). [85]. G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G.Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008). [86]. C.M. Haapamaki, J. Flannery, G. Bappi, R. Al Maruf, S.V. Bhaskara , O. Alshehri T. Yoon and M. Bajcsy, “Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles”, Nano photonics, (2016). [87]. J. Broeng, "Photonic crystal .bers", in APOC (Hangzhou, 2008). [88]. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008). [89]. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008). [90]. S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008). [91]. S. Atakaramians, S. Afshar V., B.M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009). [92]. S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “Experimental investigation of dispersion properties of THz porous fibers,” in 33rd International IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009). [93]. S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J. 1, 286–292 (2009). [94]. S.-Y. Wang, “Microstructured optical fiber with improved transmission efficiency and durability,” U.S. patent 6,418,258 (July 9, 2002). [95]. J. Sultana, M. Islam, K. Ahmed, A.Dinovitser, W.-H. NG Brian and D Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Applied Optics, (2018). [96]. J. Sultana, M. S. Islam, J. Atai, M. R. Islam, and D. Abbott, “Near zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission,” Opt. Eng. 56, 076114, (2017). [97]. M. R. Hasan, M. S. Anower, M. A. Islam, “Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance,” Appl. Opt., 55, (15), pp. 4145–4152, (2016). 73 [98]. S. Rana, G.K.M. Hasanuzzaman, S. Habib, S.F. Kaijage, R. Islam, “Proposal for a porous core octagonal photonic crystal fiber for T-ray wave guiding,” Opt. Eng. 53 (11) 064105, (2014). [99]. M. R. Hasan, M. A. Islam and A. A. Rifat, “A single mode porous-core square lattice photonic crystal fiber for THz wave propagation,” Journal of the European Optical Society-Rapid Publications, (2016). [100]. H. Ademgil et al, “Highly sensitive octagonal photonic crystal fiber based sensor,” Optik-Int. J. Light Electron Opt., vol. 125, no. 20, pp. 6274–6278,(2014). [101]. H. Ademgil and S. Haxha, “PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications,” Sensors, vol. 15, no. 12, pp. 31833–31842, (2015). [102]. F. H. Arif, K. Ahmed, S. Asaduzzaman, and A. K. Azad, “Design and optimization of photonic crystal fiber for liquid sensing applications,” Photon. Sensors, vol. 6, no. 3, pp. 279–288, (2016). [103]. J. Sultana, M. Islam, M. Faisal, M. R. Islam, Brian W.-H. Ng, H. E-Heidepriem, D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Optics Communications Volume 407, Pages 92-96, (2018). [104]. S. Chowdhury, S. Sen, K. Ahmed, and S. Asaduzzaman, “Design of highly sensible porous shaped photonic crystal fiber with strong confinement field for optical sensing,” Optik 142, 541–549 (2017). [105]. M.S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, M.R. Islam, “Ultra low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56 (9), 1232–1237, (2017). [106]. A. Ghazanfari, W. Li, M. C. Leu, and G. E. Hilmas, “A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying,” Additive Manuf vol. 15, pp. 102–112, (2017). [107]. R. T. Bise and D. J. Trevor, “Sol-gel derived microstructured fiber, Fabrication and characterization,” in Tech. Dig. Opt. Fiber Commun. Conf. (OFC/NFOEC), p. 3, (2005). [108]. H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler, L. Lima-Marques, and T. M. Monro, “3D-printed extrusion dies: A versatile approach to optical material processing,” Opt. Mater. Expvol. 4, no. 8, pp. 1494–1504,(2014). [109]. D. Russell, “Fabrication of Photonic Crystal Fiber,” Max Planck Institute for the Science of Light, (2018). [110]. M. S. Islam, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors J., vol. 18, no. 2, pp. 575–582, Jan. (2018). [111]. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett., vol. 80, no. 15, p. 2634, (2002). [112]. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys., vol. 43, no. 2B, p. L317, (2004). [113] M. S. Islam, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol., vol. 34, pp. 6–11, Mar, (2016). [114]. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 28, no. 5, pp. 1013–1018, May (2011). 74 [115]. G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Exp., vol. 7, no. 1, pp. 286–295, (2017). [116]. H. Bao, K. Nielsen, H. K. Rasmussen, P. Uhd Jepsen, and O. Bang, “Design and optimization of mechanically down-doped terahertz fiber directional couplers,” Opt. Express 22, 9486–9497 (2014). [117]. M. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, “Ultra low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56, 1232–1237 (2017). [118]. R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, S. Rana, M. A. Sadath, and C. Markos, “A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission,” IEEE Photon. Technol. Lett. 28, 1537–1540 (2016). [119]. M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzamana, M. I. Islam, S. Chowdhury, S. Sen and A. N. Bahara, “Liquid-infiltrated photonic crystal fiber for sensing purpose: Design and analysis,” Alexandria Engineering Journal, Volume 57, Issue 3, Pages 1459-146, (2018) |
en_US |