Development of an Extremely Low Loss Photonic Crystal Fiber for THZ Regime

Show simple item record

dc.contributor.author Mou, Farhana Akter
dc.date.accessioned 2020-10-26T08:29:41Z
dc.date.available 2020-10-26T08:29:41Z
dc.date.issued 2019-11-15
dc.identifier.citation [1]. W. W. chumnankul, G.M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B.S.Y. Ung, J. Balakrishnan, B.W.H. Ng, B. Ferguson, S.P. Mickan, B.M. Fischer and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95 (8) 1528–1558, (2007). [2]. M. R. Hasan, M. S. Anower, M. A. Islam, and S. M. A. Razzak, “Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance,” Appl. Opt. 55, 4145-4152, (2016). [3]. J. Balakrishnan, B.M. Fischer and D. Abbott, “Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy,” Appl. Opt. 48 (12) 2262–2266, (2009). [4]. A. Lee, W.M., Q. Qin and S. Kumar, “Real-time terahertz imaging over a standoff distance (>25 meters),” Appl. Phys. Lett. 89, (14), p.141125(1–3), (2006). [5]. S. Fathololoumi, E. Dupont and C. W. I. Chan, “Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling,” Opt. Exp. 20, (4), p. 3866, (2012). [6]. F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, (5), pp. 278–347, (2010). [7]. M. R. Hasan, S. Akter, T. Khatun, A. A. Rifat and M. S. Anower, “Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance,” Optical Engineering, 56(4), 043108 (2017). [8]. M. Skorobogatiy and A. upuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90 (11) (2007) 113514. [9]. G. Zhao, M.T. Mors and T. Wenckebach, “Terahertz dielectric properties of polystyrene foam,” J. Opt. Soc. Amer. B 19 (6), 1476–1479, (2007). [10]. A. Kawsar, B. K. Paul, S. Chowdhury, S. Sen, M. I. Islam, M. S. Islam, M. R. Hasan and S. Asaduzzaman, “Design of a single-mode photonic crystal fibre with ultra-low material loss and large effective mode area in THz regime,” IET Optoelectron., Vol. 11 Iss. 6, pp. 265-271, (2017). [11]. M. A. Habib, M. S. Anower, and M. R. Hasan, “Ultrahigh Birefringence and Extremely Low Loss Slotted-core Microstructure Fiber in Terahertz Regime,” Current Optics and Photonics, Vol. 1, No. 6, pp. 567-572, (2017). [12]. M. A. Habib and M. S. Anower, “Low Loss Highly Birefringent Porous Core Fiber for Single Mode Terahertz Wave Guidance,” Current Optics and Photonics, Vol. 2, No. 3 pp. 215-220, (2018). [13]. M. S. Islam, J. Sultana, A. Dinovitser, M. Faisal, M. R. Islam, B. W.-H. Ng, and D. Abbott, “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Applied Optics, Vol. 57, Issue 4, pp. 666-672, (2018). [14]. J. Sultana, M. S. Islam, M. Faisal, M. R. Islam a, Brian W.-H. Ng, H. Ebendorff-Heidepriem and D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Optics Communications, Volume 407, Pages 92-96, (2018). [15]. B. K. Paul, M. S. Islam, S. Sen, K. Ahmed and M. S. Uddin, “Low material loss and dispersion flattened fiber for single mode THz-wave transmission applications,” Results in Physics 11 638–642, (2018). [16]. S. Rana, A. S. Rakin, M. R. Hasan, M. S. Reza, R. Leonhardt, D. Abbott and H. Subbaraman, “Low loss and flat dispersion Kagome photonic crystal fiber in the terahertz regime,” Optics Communications, 410 452–456, (2018). 69 [17]. K. Ahmed, S. Chowdhury, B.K. Paul, M.S. Islam, S. Sen, M. I. Islam, and S. Asaduzzaman, “Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance,” Applied optics, Vol. 56, pp.3477-3483, (2017). [18]. J. Sultana, M. S Islam, J. Atai, M.R. Islam and D. Abbott, “Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission,” Optical Engineering, Vol. 56, PP. 076114, (2017). [19]. M. S. Islam, J. Sultana, A. Dinovitser, B.W.H.Ng, and D. Abbott, “A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Optics Communications, Vol. 413, pp.242-248, (2018). [20]. M. Faisal, and M.S Islam, “Extremely high birefringent terahertz fiber using a suspended elliptic core with slotted air holes,” Applied optics, Vol. 57, pp.3340-3347, (2018). [21]. S. Asaduzzaman, K. Ahmed, T. Bhuyan, and T. Farah, Hybrid photonic crystal fiber in chemical sensing, Springer Plus 5, 748 ( 2016). [22]. M. F. H. Arif, K. Ahmed, S. Asaduzzaman, and M. A. K. Azad, “Design and optimization of photonic crystal fiber for liquid sensing applications,” Photon. Sens. 6, 279–288,( 2016). [23]. J. Sultana, M. Islam, K. Ahmed, A. Dinovitser, Brian W.-H. NG, and . D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Applied Optics, Vol. 57, No. 10 ,1, (2018). [24]. B. K. Paul, K. Ahmed, S. Asaduzzaman, and M. Islam, “Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis,” Sensing and Bio-Sensing Research, Volume 12, ( 2017). [25]. H. Ademgil, and S. Haxha, “PCF Based Sensor with High Sensitivity, High Birefringence and Low Confinement Losses for Liquid Analyte Sensing Applications,” Sensors, MDPI, 31833–31842, (2015). [26]. M. Islam, J. Sultana, A. A. Rifat, Dinovitser. A., Brian W-H N., and Abbott. D. , “Terahertz Sensing in a Hollow Core Photonic Crystal Fiber,” IEEE SENSORS JOURNAL, VOL. 18, NO. 10, (2018) [27]. L. Peng, “Absorption and emission properties of photonic crystals and Metamaterials”, UMI Number: 1446140, (2007). [28]. J. D. Joannopoulos, S. G. Johnson, N. Joshua, D. R. Meade, “Photonic Crystals- Molding the flow of light”, Second Edition, Princeton University Press, (2008). [29]. L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” OPTICS EXPRESS,Vol. 17, No. 3, (2009). [30]. G. Keiser, Optical Fiber Communications, 2nd ed. (McGraw-Hill, 1991). [31]. J. M. López-Higuera, L. R. Cobo, A. Q. Incera, and A. Cobo, “Fiber optic sensors in structural health monitoring,” J. Lightwave Technol. 29, 587–608, (2011). [32]. D. R. Walt, “Fibre optic microarrays,” Chem. Soc. Rev. 39, 38–50, (2010). [33]. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556, (1994). [34]. K. Eshraghian, “SoC emerging technologies,” Proc. IEEE 94, 1197–1213, (2006). [35]. J. S. Melinger, S. S. Harsha, N. Laman, and D. Grischkowsky, “Guided-wave terahertz spectroscopy of molecular solids [Invited],” J. Opt. Soc. Am. B 26, A79–A89, (2009). [36]. M. Nagel, M. Först, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18, S601–S618, (2006). [37]. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal 70 wires,” Appl. Phys. Lett. 97, 176805, (2006). [38]. V. Astley, K. S. Reichel, J. Jones, R. Mendis, and D. M. Mittleman, “Terahertz multichannel microfluidic sensor based on a parallel-plate waveguide resonant cavities,” Appl. Phys. Lett. 100, 231108, (2012). [39]. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863, (2000). [40]. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848, (2001). [41]. T. I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094, (2004). [42]. T. I. Jeon, J. Zhang, and K. W. Goossen, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904, (2005). [43]. A. Bingham and D. Grischkowsky, “Terahertz 2-D photonic crystal waveguides,” IEEE Microw. Wireless Compon. Lett. 18, 428–430, (2008). [44]. T. I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113, (2006). [45]. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111, (2007). [46]. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433, (1999). [47]. R. Mendis, “First broadband experimental study of planar THz waveguides,” Ph.D. thesis (Oklahoma State University, 2001). [48]. Y. Xu and R. G. Bosisio, “A comprehensive study on the planar type of Goubau line for millimetre and submillimetre wave integrated circuits,” IET Microw. Antennas Propag. 1, 681-687 (2007). [49]. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009). [50]. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse- electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26, A6–A13 (2009). [51]. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13, 10815–10822 (2005). [52]. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004). [53]. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007). [54]. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “THz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004). [55]. B. M. Fischer, “Broadband THz time-domain spectroscopy of biomolecules,” Ph.D. thesis (University of Freiburg, 2005). [56]. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006). [57]. J. Balakrishnan, B. M. Fischer, and D. Abbott, “Sensing the hygroscopicity of polymer and copolymer materials using terahertz time-domain spectroscopy,” Appl. Opt. 48, 2262–2266 (2009). 71 [58]. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011). [59]. F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, “Single-mode propagation into depressed-core-index photonic-bandgap fibre designed for zero dispersion propagation at short wavelengths,” Electron. Lett. 36, 514–515 (2000). [60]. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36, 666–668 (2011). [61]. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Sci. 36, 467–495 (2006). [62]. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008). [63]. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002). [64]. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008). [65]. J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004). [66]. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc. Rapid Pub. 4, 09004 (2009). [67]. K. J. Rowland, “Guiding light in low-index media via multilayer waveguides,” Ph.D. thesis (The University of Adelaide, 2010). [68]. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [69]. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998). [70]. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650–653 (2002). [71]. T. Katagiri, Y. Matsuura, and M. Miyagi, “Photonic bandgap fiber with a silica core and multilayer dielectric cladding,” Opt. Lett. 29, 557–559 (2004). [72]. F. Couny, F. Benabid, and P. S. Light, “Large-pitch Kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006). [73]. A. Argyros and J. Pla, “Hollow-core polymer fibers with a Kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007). [74]. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice largepitch hollow-core photonic crystal fiber,” Opt. Express 16, 20626–20636 (2008). [75]. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Anti resonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express 16, 5642–5648 (2008). [76]. K. J. Rowland, S. Afshar V., and T. M. Monro, “Bandgaps and anti resonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16, 17935–17951 (2008). [77]. K. J. Rowland, S. Afshar V., A. Stolyarov, Y. Fink, and T. M. Monro, “Bragg waveguides with low-index liquid cores,” Opt. Express 20, 48–62 (2012). [78]. T. Hidaka, H. Minamide, H. Ito, S.-I. Maeta, and T. Akiyama, “Ferroelectric PVDF cladding THz waveguide,” Proc. SPIE 5135, 70–77 (2003). [79]. M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire 72 metamaterial,” Opt. Express 17, 14851–14864 (2009). [80]. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004). [81]. T. Ito, Y. Matsuura, M. Miyagi, H. Minarnide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007). [82]. O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011). [83]. S. Atakaramians, S. Afshar, T. M. Monro and Derek Abbott, “Terahertz dielectric waveguides,” Advances in Optics and Photonics 5, 169–215 (2013). [84]. Y. F. Geng, X. L. Tan, K. Zhong, P. Wang, and J. Q. Yao, “Low loss plastic terahertz photonic band-gap fibers,” Chin. Phys. Lett. 25, 3961–3963 (2008). [85]. G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G.Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008). [86]. C.M. Haapamaki, J. Flannery, G. Bappi, R. Al Maruf, S.V. Bhaskara , O. Alshehri T. Yoon and M. Bajcsy, “Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles”, Nano photonics, (2016). [87]. J. Broeng, "Photonic crystal .bers", in APOC (Hangzhou, 2008). [88]. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008). [89]. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008). [90]. S. Atakaramians, S. Afshar Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008). [91]. S. Atakaramians, S. Afshar V., B.M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009). [92]. S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem, B. M. Fischer, D. Abbott, and T. M. Monro, “Experimental investigation of dispersion properties of THz porous fibers,” in 33rd International IEEE Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009). [93]. S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. Afshar V., J. Canning, D. Abbott, and T. M. Monro, “Cleaving of extremely porous polymer fibers,” IEEE Photon. J. 1, 286–292 (2009). [94]. S.-Y. Wang, “Microstructured optical fiber with improved transmission efficiency and durability,” U.S. patent 6,418,258 (July 9, 2002). [95]. J. Sultana, M. Islam, K. Ahmed, A.Dinovitser, W.-H. NG Brian and D Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Applied Optics, (2018). [96]. J. Sultana, M. S. Islam, J. Atai, M. R. Islam, and D. Abbott, “Near zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission,” Opt. Eng. 56, 076114, (2017). [97]. M. R. Hasan, M. S. Anower, M. A. Islam, “Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance,” Appl. Opt., 55, (15), pp. 4145–4152, (2016). 73 [98]. S. Rana, G.K.M. Hasanuzzaman, S. Habib, S.F. Kaijage, R. Islam, “Proposal for a porous core octagonal photonic crystal fiber for T-ray wave guiding,” Opt. Eng. 53 (11) 064105, (2014). [99]. M. R. Hasan, M. A. Islam and A. A. Rifat, “A single mode porous-core square lattice photonic crystal fiber for THz wave propagation,” Journal of the European Optical Society-Rapid Publications, (2016). [100]. H. Ademgil et al, “Highly sensitive octagonal photonic crystal fiber based sensor,” Optik-Int. J. Light Electron Opt., vol. 125, no. 20, pp. 6274–6278,(2014). [101]. H. Ademgil and S. Haxha, “PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications,” Sensors, vol. 15, no. 12, pp. 31833–31842, (2015). [102]. F. H. Arif, K. Ahmed, S. Asaduzzaman, and A. K. Azad, “Design and optimization of photonic crystal fiber for liquid sensing applications,” Photon. Sensors, vol. 6, no. 3, pp. 279–288, (2016). [103]. J. Sultana, M. Islam, M. Faisal, M. R. Islam, Brian W.-H. Ng, H. E-Heidepriem, D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Optics Communications Volume 407, Pages 92-96, (2018). [104]. S. Chowdhury, S. Sen, K. Ahmed, and S. Asaduzzaman, “Design of highly sensible porous shaped photonic crystal fiber with strong confinement field for optical sensing,” Optik 142, 541–549 (2017). [105]. M.S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, M.R. Islam, “Ultra low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56 (9), 1232–1237, (2017). [106]. A. Ghazanfari, W. Li, M. C. Leu, and G. E. Hilmas, “A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying,” Additive Manuf vol. 15, pp. 102–112, (2017). [107]. R. T. Bise and D. J. Trevor, “Sol-gel derived microstructured fiber, Fabrication and characterization,” in Tech. Dig. Opt. Fiber Commun. Conf. (OFC/NFOEC), p. 3, (2005). [108]. H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler, L. Lima-Marques, and T. M. Monro, “3D-printed extrusion dies: A versatile approach to optical material processing,” Opt. Mater. Expvol. 4, no. 8, pp. 1494–1504,(2014). [109]. D. Russell, “Fabrication of Photonic Crystal Fiber,” Max Planck Institute for the Science of Light, (2018). [110]. M. S. Islam, “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sensors J., vol. 18, no. 2, pp. 575–582, Jan. (2018). [111]. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett., vol. 80, no. 15, p. 2634, (2002). [112]. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys., vol. 43, no. 2B, p. L317, (2004). [113] M. S. Islam, “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol., vol. 34, pp. 6–11, Mar, (2016). [114]. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Amer. B, Opt. Phys., vol. 28, no. 5, pp. 1013–1018, May (2011). 74 [115]. G. Woyessa, A. Fasano, C. Markos, A. Stefani, H. K. Rasmussen, and O. Bang, “Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing,” Opt. Mater. Exp., vol. 7, no. 1, pp. 286–295, (2017). [116]. H. Bao, K. Nielsen, H. K. Rasmussen, P. Uhd Jepsen, and O. Bang, “Design and optimization of mechanically down-doped terahertz fiber directional couplers,” Opt. Express 22, 9486–9497 (2014). [117]. M. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, “Ultra low loss hybrid core porous fiber for broadband applications,” Appl. Opt. 56, 1232–1237 (2017). [118]. R. Islam, M. S. Habib, G. K. M. Hasanuzzaman, S. Rana, M. A. Sadath, and C. Markos, “A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission,” IEEE Photon. Technol. Lett. 28, 1537–1540 (2016). [119]. M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzamana, M. I. Islam, S. Chowdhury, S. Sen and A. N. Bahara, “Liquid-infiltrated photonic crystal fiber for sensing purpose: Design and analysis,” Alexandria Engineering Journal, Volume 57, Issue 3, Pages 1459-146, (2018) en_US
dc.identifier.uri http://hdl.handle.net/123456789/568
dc.description Supervised by Prof. Dr. Mohammad Rakibul Islam en_US
dc.description.abstract In this research, the main focus is to develop Photonic Crystal Fiber (PCF) structures which exhibit ultra-low loss in THz wave propagation. Several researchers recently proposed different types of PCF geometry to minimize the losses. These proposed PCF structure depicted a moderate effective material loss from 0.029 cm-1 to 0.086 cm-1. There are several ways to minimize the losses such as core cladding geometry selection, air holes size optimization, air holes position, core radius, material selections etc. In this context a sectored cladding and square core structured PCF is designed for THz wave propagation and a hexagonal asymmetrical slotted porous core PCF geometry is proposed for polarization maintaining fiber in the THz regime. The proposed circular sectored cladding and square core PCF design exhibits extremely low effective material loss (EML) of 0.009 cm-1 at optimum design parameters. However, it shows very large effective area and a high core power fraction in the THz frequency range. Hence this PCF structure can‟t meet the requirements of polarization maintaining fiber characteristics. Thus, an asymmetrical hexagonal slotted porous core PCF geometry is developed for polarization maintaining fiber characteristics which exhibits significant differences of refractive index in x and y polarization mode with a low EML of 0.015 cm-1and confinement loss of 0.0001 cm-1. Presently PCF in the THz regime has gained popularity for chemical sensing applications. In general presented PCF exhibits maximums 90% sensitivity but still have lots of possibilities to improve the sensitivity. In this context hollow core fiber geometry is proposed for chemical sensing application. Hollow core fiber has greater analyte volume inside the core area, thus facilitating tight confinement that increases the sensitivity. This proposed PCF based sensor shows relative sensitivity very close to 100%, along with also shows very low EML of 4×10-3 cm-1 and negligible confinement loss. Interestingly the asymmetrical hexagonal slotted porous core PCF also exhibits sensitivity in the range of 68% to 94% which is comparable to that of existing structures for chemical sensing applications. The performances of the proposed designs are also compared with those of state-of-the-art works. In general all the three designs exhibit a superior EML and sensitivity while facilitating ease of fabrication. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology,Board Bazar, Gazipur, Bangladesh en_US
dc.title Development of an Extremely Low Loss Photonic Crystal Fiber for THZ Regime en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics