| Login
dc.contributor.author | Reza, Md. Taslim | |
dc.date.accessioned | 2020-10-26T08:52:27Z | |
dc.date.available | 2020-10-26T08:52:27Z | |
dc.date.issued | 2019-11-15 | |
dc.identifier.citation | [1] J. E. Lindop, “2d and 3d elasticity imaging,” Ph.D. dissertation, Pembroke College, University of Cambridge, 2008. [2] S. R. Mousavi, H. Rivaz, A. Sadeghi-Naini, G. J. Czarnota, and A. Samani, “Breast ultrasound elastography using full inversion-based elastic modulus reconstruction,” IEEE Transactions on Computational Imaging, vol. 3, no. 4, pp. 774–782, 2017. [3] J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrasonic imaging, vol. 13, no. 2, pp. 111–134, 1991. [4] R. Blanks, S. Moss, C. McGahan, M. Quinn, and P. Babb, “Effect of nhs breast screening programme on mortality from breast cancer in england and wales, 1990-8: comparison of observed with predicted mortality,” Bmj, vol. 321, no. 7262, pp. 665–669, 2000. [5] M. B. Barton, R. Harris, and S. W. Fletcher, “Does this patient have breast cancer?: The screening clinical breast examination: should it be done? how?” Jama, vol. 282, no. 13, pp. 1270–1280, 1999. [6] J. P. Kösters and P. C. Gøtzsche, “Regular self-examination or clinical examination for early detection of breast cancer,” Cochrane Database of Systematic Reviews, no. 2, 2003. [7] Y.-C. Fung, “Mechanical properties and active remodeling of blood vessels,” in Biomechanics. Springer, 1993, pp. 321–391. [8] J. D. Humphrey, “Continuum biomechanics of soft biological tissues,” vol. 459, pp. 3–46, 01 2003. [9] F. A. Duck, “Physical properties of tissue: A comprehensive reference book,” 01 1990. [10] J. M. Schmitt, “Oct elastography: imaging microscopic deformation and strain of tissue,” Opt. Express, vol. 3, no. 6, pp. 199–211, Sep 1998. 80 [11] J. E. Lindop, G. M. Treece, A. H. Gee, and R. W. Prager, “3d elastography using freehand ultrasound,” Ultrasound in medicine & biology, vol. 32, no. 4, pp. 529–545, 2006. [12] R. Dickinson and C. Hill, “Measurement of soft tissue motion using correlation between a-scans,” Ultrasound in Medicine and Biology, vol. 8, no. 3, pp. 263– 271, 1982. [13] R. M. Lerner, S. Huang, and K. J. Parker, ““sonoelasticity images derived from ultrasound signals in mechanically vibrated tissues,” Ultrasound in Medicine and Biology, vol. 16, no. 3, pp. 231–239, 1990. [14] Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 37, no. 2, pp. 45–53, 1990. [15] T. Sugimoto, S. Ueha, and K. Itoh, “Tissue hardness measurement using the radiation force of focused ultrasound,” in Ultrasonics Symposium, 1990. Proceedings., IEEE 1990. IEEE, 1990, pp. 1377–1380. [16] M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science, vol. 280, no. 5360, pp. 82–85, 1998. [17] W. L. Duvall, L. B. Croft, andM. E. Goldman, “Can hand-carried ultrasound devices be extended for use by the noncardiology medical community?” Echocardiography, vol. 20, no. 5, pp. 471–476, 2003. [18] P. Doelken and C. Strange, “Chest ultrasound for" dummies",” Chest, vol. 123, no. 2, pp. 332–332, 2003. [19] T. L. Szabo, Diagnostic ultrasound imaging: inside out. Academic Press, 2004. [20] S. I. Nikolov and J. A. Jensen, “In-vivo synthetic aperture flow imaging in medical ultrasound,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 50, no. 7, pp. 848–856, 2003. [21] S. Smith, G. Trahey, and O. Von Ramm, “Two-dimensional arrays for medical ultrasound,” Ultrasonic Imaging, vol. 14, no. 3, pp. 213–233, 1992. [22] Hippocrates and F. Adams, The Genuine Works of Hippocrates; Translated from the Greek; with a Preliminary Discourse and Annotations by Francis Adams. Sydenham Society, 1849. [23] B. S. Garra, E. I. Cespedes, J. Ophir, S. R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. F. Pennanen, “Elastography of breast lesions: initial clinical results.” Radiology, vol. 202, no. 1, pp. 79–86, 1997. 81 [24] J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 4, pp. 396–409, 2004. [25] K. T. Spencer, A. S. Anderson, A. Bhargava, A. C. Bales,M. Sorrentino, K. Furlong, and R. M. Lang, “Physician-performed point-of-care echocardiography using a laptop platform compared with physical examination in the cardiovascular patient,” Journal of the American College of Cardiology, vol. 37, no. 8, pp. 2013–2018, 2001. [26] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: a cancer journal for clinicians, vol. 68, no. 6, pp. 394–424, 2018. [27] R. L. Siegel, K. D.Miller, and A. Jemal, “Cancer statistics, 2017,” CA: a cancer journal for clinicians, vol. 67, no. 1, pp. 7–30, 2017. [28] M. Malvezzi, G. Carioli, P. Bertuccio, P. Boffetta, F. Levi, C. La Vecchia, and E. Negri, “European cancer mortality predictions for the year 2017, with focus on lung cancer,” Annals of Oncology, vol. 28, no. 5, pp. 1117–1123, 2017. [29] P. Kennedy,M.Wagner, L. Castera, C.W. Hong, C. L. Johnson, C. B. Sirlin, and B. Taouli, “Quantitative elastography methods in liver disease: current evidence and future directions,” Radiology, vol. 286, no. 3, pp. 738–763, 2018. [30] A. R. Skovoroda, A. N. Klishko, D. A. Gusakyan, Y. I. Mayevshki, V. D. Yermilova, G. A. Oranskaya, and A. P. Sarvazyan, “Quantitative analysis of the mechanical characteristics of pathologically changed soft biological tissues,” Biophysics, vol. 40, p. 1359–1364, Jun. 1995. [31] T. L. Chenevert, A. R. Skovoroda, M. O donnell, and S. Y. Emelianov, “Elasticity reconstructive imaging by means of stimulated echo mri,” Magnetic resonance in medicine, vol. 39, no. 3, pp. 482–490, 1998. [32] D. Kirbach and T. Whittingham, “3d ultrasound-the kretztechnik voluson approach,” Eur J Ultrasound, vol. 1, pp. 85–89, 1994. [33] A. Gee, R. Prager, G. Treece, and L. Berman, “Engineering a freehand 3d ultrasound system,” Pattern Recognition Letters, vol. 24, no. 4-5, pp. 757–777, 2003. [34] S. Catheline, F. Wu, and M. Fink, “A solution to diffraction biases in sonoelasticity: the acoustic impulse technique,” The Journal of the Acoustical Society of America, vol. 105, no. 5, pp. 2941–2950, 1999. 82 [35] T. J. Hall, Y. Zhu, and C. S. Spalding, “In vivo real-time freehand palpation imaging,” Ultrasound in medicine & biology, vol. 29, no. 3, pp. 427–435, 2003. [36] R. Muthupillai, D. Lomas, P. Rossman, J. F. Greenleaf, A. Manduca, and R. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science, vol. 269, no. 5232, pp. 1854–1857, 1995. [37] A. Pesavento and A. Lorenz, “Real time strain imaging—a new ultrasonic method for cancer detection: first study results,” in Proceedings of IEEE Ultrasonics Symposium, 2001, pp. 1647–1652. [38] N. Miyanaga, H. Akaza, M. Yamakawa, T. Oikawa, N. Sekido, S. Hinotsu, K. Kawai, T. Shimazui, and T. Shiina, “Tissue elasticity imaging for diagnosis of prostate cancer: a preliminary report,” International journal of urology, vol. 13, no. 12, pp. 1514–1518, 2006. [39] L. Sandrin, B. Fourquet, J.-M. Hasquenoph, S. Yon, C. Fournier, F. Mal, C. Christidis, M. Ziol, B. Poulet, F. Kazemi et al., “Transient elastography: a new noninvasive method for assessment of hepatic fibrosis,” Ultrasound in medicine & biology, vol. 29, no. 12, pp. 1705–1713, 2003. [40] C. L. De Korte, A. F. Van Der Steen, E. I. Céspedes, and G. Pasterkamp, “Intravascular ultrasound elastography in human arteries: initial experience in vitro,” Ultrasound in medicine & biology, vol. 24, no. 3, pp. 401–408, 1998. [41] J.-L. Gennisson, T. Baldeweck, M. Tanter, S. Catheline, M. Fink, L. Sandrin, C. Cornillon, and B. Querleux, “Assessment of elastic parameters of human skin using dynamic elastography,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 51, no. 8, pp. 980–989, 2004. [42] M. Vogt and H. Ermert, “Development and evaluation of a high-frequency ultrasound-based system for in vivo strain imaging of the skin,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, no. 3, pp. 375–385, 2005. [43] T. Fitzpatrick and I. Freedberg, “Fitzpatrick’s dermatology in general medicine, ed 6. new york city,” McGraw-Hill, vol. 2, pp. 2059–2060, 2003. [44] S. Emelianov, X. Chen, M. O’donnell, B. Knipp, D. Myers, T. Wakefield, and J. Rubin, “Triplex ultrasound: elasticity imaging to age deep venous thrombosis,” Ultrasound in medicine & biology, vol. 28, no. 6, pp. 757–767, 2002. [45] J. A. Schaar, C. L. de Korte, F. Mastik, C. Strijder, G. Pasterkamp, E. Boersma, P. W. Serruys, and A. F. van der Steen, “Characterizing vulnerable plaque fea- 83 tures with intravascular elastography,” Circulation, vol. 108, no. 21, pp. 2636– 2641, 2003. [46] K. Kaluzynski, X. Chen, S. Y. Emelianov, A. R. Skovoroda, and M. O’Donnell, “Strain rate imaging using two-dimensional speckle tracking,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 48, no. 4, pp. 1111–1123, 2001. [47] J. D’hooge, B. Bijnens, J. Thoen, F. Van de Werf, G. R. Sutherland, and P. Suetens, “Echocardiographic strain and strain-rate imaging: a new tool to study regional myocardial function,” IEEE transactions on medical imaging, vol. 21, no. 9, pp. 1022–1030, 2002. [48] R. Righetti, F. Kallel, R. J. Stafford, R. E. Price, T. A. Krouskop, J. D. Hazle, and J. Ophir, “Elastographic characterization of hifu-induced lesions in canine livers,” Ultrasound in medicine & biology, vol. 25, no. 7, pp. 1099–1113, 1999. [49] J. Bercoff, M. Pernot, M. Tanter, and M. Fink, “Monitoring thermally-induced lesions with supersonic shear imaging,” Ultrasonic imaging, vol. 26, no. 2, pp. 71–84, 2004. [50] A. Chakraborty, G. Berry, J. Bamber, and N. Dorward, “Intra-operative ultrasound elastography and registered magnetic resonance imaging of brain tumours: a feasibility study,” Ultrasound, vol. 14, no. 1, pp. 43–49, 2006. [51] L. Landau, “Em lifshitz theory of elasticity,” Course of theoretical physics, vol. 7, 1986. [52] W. Flugge, “Viscoelasticity, blaisdell pub,” Co., Waltham, MA, p. 92, 1967. [53] V. C. Mow and W. M. Lai, “Recent developments in synovial joint biomechanics,” Siam Review, vol. 22, no. 3, pp. 275–317, 1980. [54] G. P. Berry, J. C. Bamber, C. G. Armstrong, N. R. Miller, and P. E. Barbone, “Towards an acoustic model-based poroelastic imaging method: I. theoretical foundation,” Ultrasound in medicine & biology, vol. 32, no. 4, pp. 547–567, 2006. [55] S. Shapiro, “The status of breast cancer screening: a quarter of a century of research,” World journal of surgery, vol. 13, no. 1, pp. 9–18, 1989. [56] A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound in medicine & biology, vol. 24, no. 9, pp. 1419–1435, 1998. [57] J. F. Young, A. Bentur, and S. Mindess, “The science and technology of civil engineering materials,” 1998. 84 [58] A. Tarantola, Inverse problem theory and methods for model parameter estimation. siam, 2005, vol. 89. [59] P. E. Barbone and J. C. Bamber, “Quantitative elasticity imaging: what can and cannot be inferred from strain images,” Physics in Medicine & Biology, vol. 47, no. 12, p. 2147, 2002. [60] P. G. Ciarlet, B. Miara, and J.-M. Thomas, Introduction to numerical linear algebra and optimisation. Cambridge University Press, 1989. [61] M. F. Insana, C. Pellot-Barakat, M. Sridhar, and K. K. Lindfors, “Viscoelastic imaging of breast tumor microenvironment with ultrasound,” Journal of mammary gland biology and neoplasia, vol. 9, no. 4, pp. 393–404, 2004. [62] S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” The Journal of the Acoustical Society of America, vol. 115, no. 6, pp. 2781–2785, 2004. [63] R. Sinkus, M. Tanter, T. Xydeas, S. Catheline, J. Bercoff, and M. Fink, “Viscoelastic shear properties of in vivo breast lesions measured by mr elastography,” Magnetic resonance imaging, vol. 23, no. 2, pp. 159–165, 2005. [64] R. Righetti, J. Ophir, S. Srinivasan, and T. A. Krouskop, “The feasibility of using elastography for imaging the poisson’s ratio in porous media,” Ultrasound in medicine & biology, vol. 30, no. 2, pp. 215–228, 2004. [65] G. P. Berry, J. C. Bamber, N. R. Miller, P. E. Barbone, N. L. Bush, and C. G. Armstrong, “Towards an acoustic model-based poroelastic imaging method: Ii. experimental investigation,” Ultrasound in medicine & biology, vol. 32, no. 12, pp. 1869–1885, 2006. [66] J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annual review of biomedical engineering, vol. 5, no. 1, pp. 57–78, 2003. [67] D. Napolitano, C.-H. Chou, G. McLaughlin, T.-L. Ji, L. Mo, D. DeBusschere, and R. Steins, “Sound speed correction in ultrasound imaging,” Ultrasonics, vol. 44, pp. e43–e46, 2006. [68] S. Catheline, J.-L. Gennisson, M. Tanter, and M. Fink, “Observation of shock transverse waves in elastic media,” Physical review letters, vol. 91, no. 16, p. 164301, 2003. [69] K. J. Parker, L. S. Taylor, S. Gracewski, and D. J. Rubens, “A unified view of imaging the elastic properties of tissue,” The Journal of the Acoustical Society of America, vol. 117, no. 5, pp. 2705–2712, 2005. 85 [70] T. Matsumura, S. Tamano, R. Shinomura, T. Mitake, M. Yamakawa, T. Shiina, A. Itoh, and E. Ueno, “Diagnostic results for breast disease by real-time elasticity imaging system,” in Ultrasonics Symposium, 2004 IEEE, vol. 2. IEEE, 2004, pp. 1484–1487. [71] C. L. De Korte, E. I. Cespedes, A. Van Der Steen, G. Pasterkamp, and N. Bom, “Intravascular ultrasound elastography: assessment and imaging of elastic properties of diseased arteries and vulnerable plaque.” European journal of ultrasound: official journal of the European Federation of Societies for Ultrasound in Medicine and Biology, vol. 7, no. 3, p. 219, 1998. [72] H. Ponnekanti, J. Ophir, and I. Cespedes, “Axial stress distributions between coaxial compressors in elastography: an analytical model,” Ultrasound in Medicine and Biology, vol. 18, no. 8, pp. 667–673, 1992. [73] G.M. Treece, A. H. Gee, and R.W. Prager, “Rf and amplitude-based probe pressure correction for 3d ultrasound,” Ultrasound in medicine & biology, vol. 31, no. 4, pp. 493–503, 2005. [74] D.W. Baker, “Pulsed ultrasonic doppler blood-flow sensing,” IEEE SU, vol. 17, pp. 170–185, 1975. [75] C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time twodimensional blood flow imaging using an autocorrelation technique,” IEEE Transactions on sonics and ultrasonics, vol. 32, no. 3, pp. 458–464, 1985. [76] A. Pesavento, C. Perrey, M. Krueger, and H. Ermert, “A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 46, no. 5, pp. 1057–1067, 1999. [77] T. Varghese and J. Ophir, “A theoretical framework for performance characterization of elastography: The strain filter,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 44, no. 1, pp. 164–172, 1997. [78] C. Sumi and K. Nakayama, “A robust numerical solution to reconstruct a globally relative shear modulus distribution from strain measurements,” IEEE transactions on medical imaging, vol. 17, no. 3, pp. 419–428, 1998. [79] K. Raghavan and A. E. Yagle, “Forward and inverse problems in elasticity imaging of soft tissues,” IEEE Transactions on nuclear science, vol. 41, no. 4, pp. 1639–1648, 1994. [80] F. Kallel and M. Bertrand, “Tissue elasticity reconstruction using linear perturbation method,” IEEE Transactions on Medical Imaging, vol. 15, no. 3, pp. 299–313, 1996. 86 [81] M. Doyley, P.Meaney, and J. Bamber, “Evaluation of an iterative reconstruction method for quantitative elastography,” Physics in Medicine & Biology, vol. 45, no. 6, p. 1521, 2000. [82] S. R. Aglyamov, A. R. Skovoroda, H. Xie, K. Kim, J. M. Rubin, M. O’Donnell, T. W. Wakefield, D. Myers, and S. Y. Emelianov, “Model-based reconstructive elasticity imaging using ultrasound,” International journal of biomedical imaging, vol. 2007, 2007. [83] D. M. Regner, G. K. Hesley, N. J. Hangiandreou, M. J. Morton, M. R. Nordland, D. D. Meixner, T. J. Hall, M. A. Farrell, J. N. Mandrekar, W. S. Harmsen et al., “Breast lesions: evaluation with us strain imaging–clinical experience of multiple observers,” Radiology, vol. 238, no. 2, pp. 425–437, 2006. [84] W. Svensson and D. Amiras, “Ultrasound elasticity imaging,” Breast Cancer Online, vol. 9, no. 6, pp. 1–7, 2006. [85] T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall, “Elastic moduli of breast and prostate tissues under compression,” Ultrasonic imaging, vol. 20, no. 4, pp. 260–274, 1998. [86] H. Ponnekanti, J. Ophir, Y. Huang, and I. Céspedes, “Fundamental mechanical limitations on the visualization of elasticity contrast in elastography,” Ultrasound in Medicine and Biology, vol. 21, no. 4, pp. 533–543, 1995. [87] L. Gao, K. Parker, S. Alam, and R. Lerner, “Sonoelasticity imaging: theory and experimental verification,” The Journal of the Acoustical Society of America, vol. 97, no. 6, pp. 3875–3886, 1995. [88] L. Taylor, B. Porter, D. Rubens, and K. Parker, “Three-dimensional sonoelastography: principles and practices,” Physics in Medicine & Biology, vol. 45, no. 6, p. 1477, 2000. [89] K. Parker, S. Huang, R. Musulin, and R. Lerner, “Tissue response to mechanical vibrations for “sonoelasticity imaging” Ultrasound in medicine & biology, vol. 16, no. 3, pp. 241–246, 1990. [90] S.-R. Huang, R. M. Lerner, and K. J. Parker, “On estimating the amplitude of harmonic vibration from the doppler spectrum of reflected signals,” The Journal of the Acoustical Society of America, vol. 88, no. 6, pp. 2702–2712, 1990. [91] K. J. Parker, D. Fu, S. M. Graceswki, F. Yeung, and S. F. Levinson, “Vibration sonoelastography and the detectability of lesions,” Ultrasound in medicine & biology, vol. 24, no. 9, pp. 1437–1447, 1998. 87 [92] Z. Wu, L. S. Taylor, D. J. Rubens, and K. J. Parker, “Shear wave focusing for three-dimensional sonoelastography,” The Journal of the Acoustical Society of America, vol. 111, no. 1, pp. 439–446, 2002. [93] D. J. Rubens, M. A. Hadley, S. K. Alam, L. Gao, R. D. Mayer, and K. J. Parker, “Sonoelasticity imaging of prostate cancer: in vitro results.” Radiology, vol. 195, no. 2, pp. 379–383, 1995. [94] L. S. Taylor, D. J. Rubens, B. C. Porter, Z. Wu, R. B. Baggs, P. A. di Sant’Agnese, G. Nadasdy, D. Pasternack, E. M. Messing, P. Nigwekar et al., “Prostate cancer: three-dimensional sonoelastography for in vitro detection,” Radiology, vol. 237, no. 3, pp. 981–985, 2005. [95] M. Sanada, M. Ebara, H. Fukuda, M. Yoshikawa, N. Sugiura, H. Saisho, Y. Yamakoshi, K. Ohmura, A. Kobayashi, and F. Kondoh, “Clinical evaluation of sonoelasticity measurement in liver using ultrasonic imaging of internal forced low-frequency vibration,” Ultrasound in medicine & biology, vol. 26, no. 9, pp. 1455–1460, 2000. [96] N. Masuda, T. Tsujita, T. Ebuchi, and Y. Yamakoshi, “Low-frequency elastic wave imaging by adaptive combination of fundamental and tissue harmonic ultrasonic waves,” Japanese journal of applied physics, vol. 42, no. 5S, p. 3271, 2003. [97] Z.Wu, L. S. Taylor, D. J. Rubens, and K. J. Parker, “Sonoelastographic imaging of interference patterns for estimation of the shear velocity of homogeneous biomaterials,” Physics in Medicine & Biology, vol. 49, no. 6, p. 911, 2004. [98] J. McLaughlin, D. Renzi, K. Parker, and Z. Wu, “Shear wave speed recovery using moving interference patterns obtained in sonoelastography experiments,” The Journal of the Acoustical Society of America, vol. 121, no. 4, pp. 2438– 2446, 2007. [99] Z. Wu, K. Hoyt, D. J. Rubens, and K. J. Parker, “Sonoelastographic imaging of interference patterns for estimation of shear velocity distribution in biomaterials,” The Journal of the Acoustical Society of America, vol. 120, no. 1, pp. 535–545, 2006. [100] K. Hoyt, K. J. Parker, and D. J. Rubens, “Real-time shear velocity imaging using sonoelastographic techniques,” Ultrasound in medicine & biology, vol. 33, no. 7, pp. 1086–1097, 2007. [101] M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission,” Proceedings of the National Academy of Sciences, vol. 96, no. 12, pp. 6603–6608, 1999. 88 [102] A. Alizad, M. Fatemi, L. E. Wold, and J. F. Greenleaf, “Performance of vibroacoustography in detecting microcalcifications in excised human breast tissue: A study of 74 tissue samples,” IEEE transactions on medical imaging, vol. 23, no. 3, pp. 307–312, 2004. [103] M. Fatemi, L. E. Wold, A. Alizad, and J. F. Greenleaf, “Vibro-acoustic tissue mammography,” IEEE transactions on medical imaging, vol. 21, no. 1, pp. 1–8, 2002. [104] A. Alizad, L. E.Wold, J. F. Greenleaf, andM. Fatemi, “Imaging mass lesions by vibro-acoustography: modeling and experiments,” IEEE transactions on medical imaging, vol. 23, no. 9, pp. 1087–1093, 2004. [105] L. Sandrin, S. Catheline,M. Tanter, X. Hennequin, andM. Fink, “Time-resolved pulsed elastography with ultrafast ultrasonic imaging,” Ultrasonic imaging, vol. 21, no. 4, pp. 259–272, 1999. [106] L. Sandrin, M. Tanter, J.-L. Gennisson, S. Catheline, and M. Fink, “Shear elasticity probe for soft tissues with 1-d transient elastography,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 49, no. 4, pp. 436–446, 2002. [107] L. Sandrin, M. Tanter, S. Catheline, and M. Fink, “Shear modulus imaging with 2-d transient elastography,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 49, no. 4, pp. 426–435, 2002. [108] K. Nightingale, “Acoustic radiation force impulse (arfi) imaging: a review,” Current medical imaging reviews, vol. 7, no. 4, pp. 328–339, 2011. [109] M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, “Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging,” Ultrasound in medicine & biology, vol. 34, no. 9, pp. 1373–1386, 2008. [110] Y. Zhu, T. J. Hall, and J. Jiang, “A finite-element approach for young’s modulus reconstruction,” IEEE transactions on medical imaging, vol. 23, no. 7, pp. 890– 901, 2003. [111] P. Forrest, Breast cancer screening: report to the Health Ministers of England, Wales, Scotland & Northern Ireland. HMSO, 1986. [112] C. E. Rasmussen, “Gaussian processes in machine learning,” in Advanced lectures on machine learning. Springer, 2004, pp. 63–71. [113] A. Joshi and R. Kaur, “A review: Comparative study of various clustering techniques in data mining,” International Journal of Advanced Research in Computer Science and Software Engineering, vol. 3, no. 3, 2013. 89 [114] A. Gefen and B. Dilmoney, “Mechanics of the normal woman’s breast,” Technology and Health Care, vol. 15, no. 4, pp. 259–271, 2007. [115] S. R. Mousavi, H. Rivaz, A. Sadeghi-Naini, G. J. Czarnota, and A. Samani, “Breast ultrasound elastography using full inversion-based elastic modulus reconstruction,” IEEE Transactions on Computational Imaging, vol. 3, no. 4, pp. 774–782, 2017. [116] A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Physics in medicine & biology, vol. 52, no. 6, p. 1565, 2007. | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/570 | |
dc.description | Supervised by Prof. Dr. Mohammad Rakibul Islam | en_US |
dc.description.abstract | Modulus imaging has great potential in soft-tissue characterization since it reveals intrinsic mechanical properties. The elastic properties of biological tissues are usually modified by disease. The physical quantities that describe tissue elastic properties are stress, strain and elastic moduli. Stress distribution reconstruction is vital to find out the true value of the modulus distribution. Stress distribution not only depends on the physiology of the tissue but also largely changes with the boundary conditions. In clinical practice it is impossible to find out in-depth information about the stress distribution of the tissue. Stress distribution only can predict based on different parameters. In this dissertation stress distribution is predicted from the strain distribution and stress value on the top surface of the tissue body. For predicting the first stress distribution the difference of strain distributions and the top surface stresses are taken as the references. The stress distribution prediction is updated by addressing the error of the predicting strain values. Simulation is carried out for different aspects of the tissue background and the inclusion. The proposed concept is validated with the recent algorithm by the simulation data first then comparing with the recently published data. The modulus prediction error is around 4% to 5.5% comparing with the real modulus value. Researchers in this field show the inclusion to background modulus mean error as 6.87% for a particular phantom whereas the proposed algorithm found the mean error 4.69% for the same kind of phantoms. The overall stress prediction will improve the modulus prediction which refers to good quality modulus image. Clinically it will provide detail information about the modulus spectrum. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Electrical and Electronic Engineering, Islamic University of Technology,Board Bazar, Gazipur, Bangladesh | en_US |
dc.title | Breast Elastography Modulus Reconstruction from Simultaneous Acquisition of Stress and RF Echo Signal | en_US |
dc.type | Thesis | en_US |