Low loss Slotted core photonic crystal fiber for terahertz radiation

Show simple item record

dc.contributor.author Islam, Md. Aminul
dc.date.accessioned 2020-10-26T08:56:53Z
dc.date.available 2020-10-26T08:56:53Z
dc.date.issued 2019-11-15
dc.identifier.citation 1. J C Knight, T A Birks, P S J Russell, and D M Atkin, ―All-silica single-mode optical fiber with photonic crystal cladding,‖ Optics Letters, Vol. 21, no. 19,pp. 1547–1549, September, 1996. 2. Huttunen, A., and Törmä, P.,―Effect of wavelength dependence of nonlinearity, gain, and dispersion in photonic crystal fiber amplifiers‖. Optics Express, Vol.13, no.11, pp. 4286, December, 2015.. 3. Z Tan, X Hao, Y Shao, Y Chen, X Li, and P Fan, Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface Plasmon resonance sensor. Optics Express, Vol.22, no.12, pp. 15049, March, 2014. 4. T V Ramanaa, A Pandianb, C Ellammalc, T Jarind, Ahmed Nabih Zaki Rashede, A Sampath Kumar, ―Numerical analysis of circularly polarized modes in coreless photonic crystal fiber‖. Elsevier B.V. (February, 2019). 5. Y. Zhu, Z. He, and H. Du, ―Detection of external refractive index change with high sensitivity using long-period gratings in photonic crystal fiber,‖ Sensors and Actuators B, vol. 131, no. 1, pp. 265–269, October, 2008. 6. Shiju Chacko, Jeena Maria Cherian, Sunilkumar K, ―Low Confinement Loss Photonic Crystal Fiber (PCF) With Flat Dispersion over C-Band‖, International Journal of Computer Applications, Vol. 85, no.15, December, 2013. 7. Mortensen, N. A., Folken, J. R., Skovgaard, P. M. W., and Broeng, J. (2002). ―Numerical aperture of single-mode photonic crystal fibers‖, IEEE Photonics Technology Letters, Vol.14, no.8, pp. 1094–1096, March, 2017.. 8. Yang, T., Wang, E., Jiang, H., Hu, Z., and Xie, K. (2015). High birefringence photonic crystal fiber with high nonlinearity and low confinement loss. Optics Express, Vol. 23, no.7, pp.8329, march 2016.. 9. Tan, X., Geng, Y., Li, E., Wang, W., Wang, P., and Yao, J. (2008). ―Characterization of bent large-mode-area photonic crystal fiber‖, Journal of Optics A: Pure and Applied Optics, Vol.10, no.8, pp. 085303, October, 2015. 10. Vu, N. H., Hwang, I.-K., and Lee, Y.-H. (2008). Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method. Optics Letters, Vol. 33, no.2, pp. 119,August, 2018, 60 | P a g e 11. Ali, S., Sarkar, T., Day, A., Hasan, M. R., Mou, J. R., Rana, S., Ahmed, N. (2016). ―Ultra-low loss THz waveguide with flat EML and near zero flat dispersion properties. 2016 9th International Conference on Electrical and Computer Engineering (ICECE). 12. P S Maji and Roy Chaudhuri, ―Super continuum generation in ultra-flat near zero dispersion PCF with selective liquid infiltration‖, Optic - International Journal for Light and Electron Optics, Vol. 125, no.20, pp.5986–5992,july, 2017. 13. Lin, P., Li, Y., Cheng, T., Suzuki, T. and Ohishi, Y. Coexistence of Photonic Bandgap Guidance and Total Internal Reflection in Photonic Crystal Fiber Based on a High-Index Array with Internal Air Holes‖, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 22, no.2, pp. 265–270, March, 2016. 14. H.Han, H.Park, M.Cho and J.Kim, ―Terahertz pulse propagation in a plastic photonic crystal fiber,‖ Appl.Phys. Lett. Vol. 80, pp.2634–2636, November 2002. 15. S. Asaduzzaman and K. Ahmed, ―Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring,‖ Sensing and Bio-Sensing Research, Vol.10, pp. 20–26, December, 2016. 16. Lu, Y., Hao, C.-J., Wu, B.-Q., Musideke, M., Duan, L.-C., Wen, W.-Q. and Yao, J.-Q,‖Surface Plasmon Resonance Sensor Based on Polymer Photonic Crystal Fibers with Metal Nanolayers. Sensors‖, Vol. 13, no.1, pp.956–965, November, 2013. 17. Muduli, N., Achary, J. S. N., and Padhy, H. ku, ―Grade-2 Teflon (AF1601) PCF for optical communication using 2D FDTD technique: a simplest design‖. Journal of Modern Optics, Vol.63, no.7, pp. 685–691, June, 2017.. 18. Shuvo Sen, Sawrab Chowdhury, Kawsar Ahmed, Sayed Asaduzzaman,"Design of a Porous Cored Hexagonal Photonic Crystal Fiber Based Optical Sensor With High Relative Sensitivity for Lower Operating Wavelength," Photonic Sensor , Vol. 7, No. 1, pp. 55‒65 , March 2017. 19. Z. L. Liu, J. An, J. W. Xing, and H. L. Du, ―Polarization rotator based on liquid crystal infiltrated tellurite photonic crystal fiber,‖ Optic International Journal for Light and Electron Optics, Vol. 127, no.10, pp. 4391–4395, April, 2016. 20. G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, ―Single mode step-index polymer optical fiber for humidity insensitive high 61 | P a g e temperature fiber Bragg grating sensors,‖ Opt. Express, Vol. 24, pp.1253–1260, march, 2016. 21. A. Hassani, A. Dupuis, and M. Skorobogatiy, ―Low loss porous terahertz fibers containing multiple subwavelength holes,‖ Appl. Phys. Lett. Vol. 92, pp. 071101, January, 2008. 22. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, ―Transmission measurements of hollow-core THz Bragg fibers,‖ J. Opt. Soc. Am. B, Vol. 28, pp. 896–907 ,October, 2011. 23. M. Uthman, B.M.A. Rahman, N. Kejalakshmi, A. Agrawal, and K.T.V. Grattan, ―Design and characterization of low-loss porous-core photonic crystal fiber,‖ IEEE Photon. J. Vol.4, pp. 2315 –2325, December, 2012. 24. K. Tsuruda, M. Fujita, and T. Nagatsuma, ―Extremely low-loss terahertz waveguide based on silicon photonic-crystal slab,‖ Opt. Express, Vol. 23, pp. 31977–31990, September, 2015. 25. Md. Saiful Islama, Jakeya Sultanaa, Mohammad Faisal, Mohammad Rakibul Islam, Alex Dinovitser, Brian W-H. Ng, Derek Abbott, ―A modified hexagonal photonic crystal fiber for terahertz applications,‖ Elsevier Optical Fiber Technology, vol. 79, pp. 336–339, May 2018. 26. Fahad Ahmed, Subrata Roy, Kawsar Ahmed, Bikash Kumar Paul,Ali Newaz Bahar, ―A novel star shape photonic crystal fiber for low loss terahertz pulse propagation‖, Nano Communication Networks, Vol. 19,pp.26–32 , October 2019. 27. M. A. Habiba, and M. S. Anower , ―Square Porous Core Microstructure Fiber for Low Loss Terahertz Applications‖, Optics and Spectroscopy, Vol. 126, No. 5, pp. 607–613, July, 2019. 28. Reyes-Vera, E., Usuga-Restrepo, J., Jimenez-Durango, C., Montoya-Cardona, J. and Gomez-Cardona, N. ―Design of Low-loss and Highly Birefringent Porous-Core Photonic Crystal Fiber and Its Application to Terahertz Polarization Beam Splitter,‖ IEEE Photonics Journal, vol. 10, no. 4, pp. 1–13, August 2018. 29. Md. Sohidul Islam, Jamilur Rahman and Mohammad Rakibul Islam, ―Topas Based Low Loss and Dispersion Flatten Decagonal Porous Core Photonic Crystal Fiber for Terahertz Communication‖, International Journal of Microwave and Optical Technology, Vol. 14, No. 1, January 2019. 62 | P a g e 30. Dhanu Krishna, G., Mahadevan Pillai, V. P. and Gopchandran, K. G.,―Design of low dispersion and low loss photonic crystal fiber: Defected core circular-octagon hybrid lattices‖, Optical Fiber Technology, Vol. 51,pp 17–24, November, 2019. 31. Cunningham, P.D., Valdes, N.N., Vallejo, F.A., Hayden, L.M., Polishak, B., Zhou, X.H., Luo, J., Jen, A.K.Y., Williams, J.C., Twieg, R.J,‖Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials‖. J. Appl. Phys. Vol. 109, pp. 043505 April, 2011. 32. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M.Skorobogatiy, ―Fabrication and THz loss measurements of porous sub wavelength fibers using a directional coupler method,‖ Opt. Express, Vol. 17, pp. 8012–8028, December, 2009.. 33. A. Dupuis, A. Mazhorova, F. Desevedavy, M. Roze, and M. Skorobogatiy,―Spectral characterization of porous dielectric sub wavelength THz fibers fabricated using a microstructure molding technique,‖ Opt. Express, Vol. 18, pp. 13813–13828, July, 2010. 34. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large,and M. A. van Eijkelenborg, ―Transmission of terahertz radiation using a microstructure polymer optical fiber,‖ Opt. Lett, Vol.33, pp. 902–904, March, 2008. 35. S. Atakaramians, S. Afshar Vahid, M. Nagel, H. Ebendorff-Heidepriem,B. M. Fischer, D. Abbott, and T. M. Monro, ―THz porous fibers:design, fabrication and experimental characterization,‖ Opt. Express, Vol. 17, pp. 14053–14062 ,February, 2009. 36. Jakeya Sultana, Md. Saiful Islam, Mohammad Faisal, Mohammad Rakibul Islam, Brian W.-H. Ng, Heike Ebendorff-Heidepriem, Derek Abbott, ―Highly Birefringent elliptical core photonic crystal fiber for terahertz application,‖ Optics Communications, vol. 407, pp. 92–96, January 2018. 37. Hasanuzzaman, G. K. M., Sohel Rana, and Md Selim Habib. "A Novel Low Loss, Highly Birefringent Photonic Crystal Fiber in THz Regime.", IEEE Photonics Technology, Vol. 28, no. 8, pp. 899-902, April, 2016. 38. Ahmed, Kawsar, Sawrab Chowdhury, Bikash Kumar Paul, Md Shadidul Islam, Shuvo Sen, Md Ibadul Islam, and Sayed Asaduzzaman. "Ultrahigh Birefringence, 63 | P a g e Ultralow Material Loss Porous Core Single-Mode Fiber for Terahertz Wave Guidance.", Applied optics, Vol. 56, no. 12,pp. 3477-3483, January, 2017. 39. Islam, Md Saiful, Jakeya Sultana, Alex Dinovitser, Brian W-H. Ng, and Derek Abbott. "A Novel Zeonex Based Oligoporous-Core Photonic Crystal Fiber for Polarization Preserving Terahertz Applications.", Optics Communications, Vol. 413, pp. 4145-4152, August, 2018. 40. Hasan, Md Rabiul, Md Shamim Anower, Md Ariful Islam, and S. M. A. Razzak. "Polarization-Maintaining Low-loss Porous-Core Spiral Photonic Crystal Fiber for Terahertz Wave Guidance.",, Applied optics, Vol. 55, no. 15, pp. 4145-4152, May, 2016. 41. Luo, Jianfeng, Fengjun Tian, Hongkun Qu, Li Li, Jianzhong Zhang, Xinhua Yang, and Libo Yuan. "Design and Numerical Analysis of a THz Square Porous-Core Photonic Crystal Fiber for Low Flattened Dispersion, Ultrahigh Birefringence.", applied optics, Vol. 56, no. 24, 6993-7001, April, 2017. 42. Wu, Zhiqing, Xiaoyan Zhou, Handing Xia, Zhaohua Shi, Jin Huang, Xiaodong Jiang, and Weidong Wu. "Low-loss Polarization-Maintaining THz Photonic Crystal Fiber with a Triple-Hole Core.", applied optics, Vol. 56, no. 8, pp. 2288-2293, May, 2017. 43. Habib, Md Ahasan, and Md Shamim Anower. "Design and Numerical Analysis of Highly Birefringent Single Mode Fiber in THz Regime.", Optical Fiber Technology, Vol. 47, pp.197-203, March, 2019. 44. Tianyu Yang , Can Ding , Member, IEEE, Richard W. Ziolkowski, Fellow, IEEE, Fellow, OSA, and Y. Jay Guo , Fellow, IEEE, ―A Scalable THz Photonic Crystal Fiber With Partially-Slotted Core That Exhibits Improved Birefringence and Reduced Loss,‖ Journal of light wave technology , vol. 36, no. 16, pp. 3408 – 3417, June, 2018. 45. Y. F. He, P.I. Ku, J.R. Knab, J.Y. Chen, A.G. Markelz, "Protein Dynamical Transition Does Not Require Protein Structure," Physical Review Letters, vol. 101, p. 178103, October, 2008. 46. J. Q. Zhang, D. Grischkowsky, "Waveguide terahertz time-domain spectroscopy of nanometer water layers," Optics Letters, vol. 29, pp. 1617-1619, January, 2004. 47. L. Ho, M. Pepper, P. Taday, "Terahertz spectroscopy: Signatures and fingerprints," Nature Photonics, vol. 2, pp. 541, December, 2008. 64 | P a g e 48. C. J. Strachan, P.F. Taday, D.A. Newnham, K.C. Gordon, J.A. Zeitler, M. Pepper, T. Rades, "Using Terahertz Pulsed Spectroscopy to Quantify Pharmaceutical Polymorphism and Crystallinity," Journal of Pharmaceutical Science, vol. 94, pp. 837-846, June, 2005. 49. N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, ―7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,‖ Opt. Express, Vol. 16, pp. 4094–4105, November, 2008. 50. Q. Chen, Z.P. Jiang, G.X. Xu, X.C. Zhang, "Near-field terahertz imaging with a dynamic aperture," Optics Letters, vol. 25, pp. 1122-1124, March, 2000. 51. M. Nagel, Bolivar, P. H., Brucherseifer, M., Kurz, H., Bosserhoff, A. and Büttner, R., "Integrated THz technology for label-free genetic diagnostics," Applied Physics Letters, vol. 80, pp. 154-156, January, 2002 52. . D. Pinto and S. S. A. Obayya, ―Improved complex-envelope alternating direction-implicit finite-difference-time-domain method for photonic band gap cavities,‖ J. Lightw. Technol., vol. 25, no. 1, pp. 440–447, January, 2007. 53. M. Skorobogatiy and A. Dupuis, ―Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,‖ Appl. Phys. Vol. 90, no. 11, pp. 113514 , October, 2007. 54. Md.Saiful Islam, Sohel Rana, Mohammad Rakibul Islam, Mohammad Faisal, Hasan Rahman, Jakeya Sultana, ―Porous core photonic crystal fiber for ultra-low material loss in THz regime,‘‘ IET Communications, Vol.10, no.16, pp. 2179 – 2183, October 2016. 55. Sohel Rana, Golam Kibria, Md. Hasanuzzaman, Samiul Habib, Shubi F. Kaijage, Raonaqul Islam ―Proposal for a low loss porous core octagonal photonic crystal fiber for T-ray wave guiding,‖ Optical Engineering, Vol. 53, no. 11 , pp. 115107, November 2014. 56. B. Bowden, J. A. Harrington, and O. Mitrofanov, "Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation," Optic Letters, vol. 32, pp. 2945-2947, February, 2007. 57. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, "Transmission measurements of hollow-core THz Bragg fibers," Journal of Optical Society of America, vol. 28, pp. 896-907, June, 2011. 58. M. Nagel, A. Marchewka, and H. Kurz, "Low-index discontinuity terahertz waveguides," Optic Express, vol. 14, pp. 9944-9954, July, 2006. 65 | P a g e 59. M. Uthman, B. M. A. Rahman, N. Kejalakshmy, A. Agrawal, K. T. V. Grattan, "Design and Characterization of Low-Loss Porous-Core Photonic Crystal Fiber," IEEE Photonic Journal, vol. 4, pp. 2315-2325, September, 2012. 60. S. Kaijage, ZhengbiaoOuyang, Xin Jin, "Porous-Core Photonic Crystal Fiber for Low Loss Terahertz Wave Guiding," IEEE Photonic Technology Letters, vol. 25, pp. 1454-1457, October, 2013. 61. A. Hassani, A. Dupuis, and M. Skorobogatiy, ―Low loss porous terahertz fibers containing multiple sub wavelength holes,‖ Appl. Phys. Vol. 92, pp. 071101, November, 2008. 62. S.-Y. Wang, ―Microstructure optical fiber with improved transmission efficiency and durability,‖ U.S. patent 6, pp.418, 258, July 9, 2002. 63. S. Atakaramians, S. AfsharVahid, B. M. Fischer, D. Abbott, and T. M.Monro, ―Porous fibers: a novel approach to low loss THz waveguides, ‖Opt. Vol. 16, pp. 8845–8854, April 2008. 64. M. R. Hasan, M. A. Islam, and A. A. Rifat, ―A single mode porous-core square lattice photonic crystal fiber for THz wave propagation,‖ J. Eur.Opt. Soc. Rapid Publ. Vol. 12, no.15, pp.1–8, January 2016. 65. Raonaqul Islam, G. K. M. Hasanuzzaman, Md. Selim Habib, Sohel Rana, M. A. G. Khan, ―Low-loss rotated porous core hexagonal single-mode fiber in THz regime,‖ Elsevier Optical Fiber Technology, Vol. 24, pp. 38-43, August 2015. 66. Md.Saiful Islam, Sohel Rana, Mohammad Rakibul Islam, Mohammad Faisal, Hasan Rahman, Jakeya Sultana, ―Porous core photonic crystal fiber for ultra-low material loss in THz regime,‘‘ IET Communications, Vol.10, no.16, pp. 2179 – 2183, October 2016. 67. S. F. Kaijage, Z. Ouyang, X. Jim, ―Porous-core photonic crystal fiber for low loss terahertz wave guiding,‖ IEEE Photon. Technol. Lett., vol. 25, no. 15, pp. 1454–1457, Aug. 1, 2013. 68. M.A. Habib, M.S. Anower, M.R. Hasan, ―Highly birefringent and low loss microstructure fiber for THz wave guidance‖, Opt. Communication, Vol. 423, pp.140–144, July 2018.. 69. K. Nielsen, ―Bendable, low-loss Topas fibers for the terahertz frequency range,‖ Opt. Express, Vol. 17, no.10, pp. 8592–8601, August 2009. 70. H. Bao, ―Fabrication and characterization of porous-core honeycomb band gap THz fibers,‖ Opt. Express, Vol. 20, no.28, pp. 29507–29517, December 2012. 66 | P a g e 71. M.S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, M.R. Islam, ―Ultra low loss hybrid core porous fiber for broadband applications‖, Appl. Opt. Vol. 56, pp. 1232–123, February 2017. 72. S. Rana, M.S. Islam, M. Faisal, K.C. Roy, R. Islam, S.F. Kaijage, ―Single-mode porous fiber for low-loss polarization maintaining terahertz transmission‖, Opt. Eng. Vol. 55, no. 7, pp. 076114, January 2016. 73. Roy, S., S. F. Kayser, and T. Azmaeen, "Design and optimization of a single mode octagonal photonic crystal fiber for high negative dispersion and high nonlinearity." In 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), pp. 614-619. IEEE, 2016. 74. Chowdhury, Sawrab, Shuvo Sen, Kawsar Ahmed, and Sayed Asaduzzaman, "Design of highly sensible porous shaped photonic crystal fiber with strong confinement field for optical sensing." Optic, Vol. 142,pp. 541-549, November 2017. 75. Md Sohidul Islam, K M Samaun Reza and Mohammad Rakibul Islam, ―Topas based high Birefringent and low loss single mode hybrid porous core fiber for broadband application.‖ Indian Journal of Pure and Applied Physics Vol.56, pp.399-404, May 2018. 76. Hasanuzzaman, G. K. M., Sohel Rana, and Md Selim Habib, "A novel low loss, highly Birefringent photonic crystal fiber in THz regime." IEEE Photonics Technology Letters, Vol. 28, no. 8, pp. 899-902, October 2016. 77. Kawsar Ahmed, Sawrab Chowdhury, Bikash Kumar Paul, Md Shadidul Islam, Shuvo Sen, Md Ibadul Islam, and Sayed Asaduzzaman, "Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance." Applied optics, Vol. 56, no. 12, pp. 3477-3483, January 2017. 78. Md. Saiful Islam, Jakeya Sultana, Alex Dinovitser, Brian W-H. Ng, and Derek Abbott. "A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications." Optics Communications, Vol. 413 pp. 242-248, January 2018. 79. Wu, Zhiqing, Zhaohua Shi, Handing Xia, Xiaoyan Zhou, Qinghua Deng, Jin Huang, Xiaodong Jiang, and Weidong Wu, "Design of highly birefringent and low-loss oligoporous-core THz photonic crystal fiber with single circular air-hole unit." IEEE 67 | P a g e Photonics Journal, Vol. 8, no. 6, pp.1-11, February 2016. 80. Hasan, Md Rabiul, Md Shamim Anower, Md Ariful Islam, and S. M. A. Razzak. "Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance." Applied optics, Vol. 55, no. 15, pp.4145-4152, March 2016. 81. Luo, Jianfeng, Fengjun Tian, Hongkun Qu, Li Li, Jianzhong Zhang, Xinhua Yang, and Libo Yuan. "Design and numerical analysis of a THz square porous-core photonic crystal fiber for low flattened dispersion, ultrahigh birefringence." Applied optics, Vol. 56, no. 24, pp. 6993-7001,February 2018 en_US
dc.identifier.uri http://hdl.handle.net/123456789/571
dc.description Supervised by Prof. Dr. Mohammad Rakibul Islam en_US
dc.description.abstract Fiber optic systems are important telecommunication infrastructure for world-wide broadband networks. Wide bandwidth signal transmission with low delay is a key requirement in present day applications. Optical fibers provide enormous and unsurpassed transmission bandwidth with negligible latency, and are now the transmission medium of choice for long distance and high data rate transmission in telecommunication networks. Terahertz radiation occupies a middle ground between microwaves and infrared light waves known as the terahertz gap, where technology for its generation and manipulation is in its infancy. The frequency band of 0.1-10 THz, known as THz band has brought potential applications in many important fields. For wave propagation, THz systems use free space as medium. But in free space, waves face many difficulties which is very big issue for wave propagation. So we have to use guided transmission instead of unguided transmission. Our main objective is to design an optical waveguide which will be able to transmit terahertz signal into longer distances. Low material loss and high core power fraction is major concern for designing a Terahertz photonic crystal fiber. Material loss occurs due to the use of bulk material in the background of photonic crystal fiber. Several ultra-low loss terahertz (THz) photonic crystal fibers (PCF) design have been proposed and inquired precisely. We proposed four photonic crystal fiber designs where two is slotted air hole inside the octagonal core, another one is slotted air hole inside the hexagonal core and finally last one is a circular air hole inside hexagonal core. All the simulations are performed with Finite Element Modeling (FEM) package, COMSOL 5.3b. The design can be fabricated using stack and drilling method. The investigation results have proved that the designed PCFs shows very low effective material loss (EML) such as 0.010 cm−1, 0.012 cm−1, 0.025 cm−1 and 0.029 cm−1, at 2.1THz, 1.6 THz, 1.6 THz and 1.7 THz respectively. The core power fractions of those proposed design are 70%, 60%, 50% and 49% respectively. Moreover, other optical parameter of those PCF such as effective mode area (EMA), confinement loss (CL), and dispersion have been investigated also. The proposed PCFs suggested flatted dispersion from 0.70 THz to 2.10 THz, 0.60 THz to 1.60 THz, 0.60 THz to 1.60 THz and 0.50 THz to 1.70 THz. The outcomes indicate that the proposed PCFs will be good candidates for THz or T-ray transmission as well as in the area of photonic devices also. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology,Board Bazar, Gazipur, Bangladesh en_US
dc.title Low loss Slotted core photonic crystal fiber for terahertz radiation en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics