Development and Evaluation of a Green Composite Materials from Natural Fibers

Show simple item record

dc.contributor.author Bhuiyan, Md.Shah Alam
dc.date.accessioned 2020-10-26T09:19:34Z
dc.date.available 2020-10-26T09:19:34Z
dc.date.issued 2019-11-15
dc.identifier.citation 1. Venkateshwaran, N. and Elayaperumal, A. (2010). Banana Fiber Reinforced Polymer Composites - A Review. Journal of Reinforced Plastics and Composites, 29(15), pp.2387-2396. 2. K.Kannan 1, S.Harikannan 2, V.Arun 3, R.Anusundar 4, S.Ashokraj,[2015] “Analysis of Mechanical Properties of Jute & Banana Fiber Reinforced Vinyl Ester Composites” International Journal of Innovative Research in Science, Engineering and Technology, volume 4, special issue 6, pp 1630-1638. 3. M. Bakkal and M. Savas, "Development of Natural Fiber Reinforced Laminated Hybrid Composites", Advanced Materials Research, Vol. 628, pp. 15-20, 2013 4. R. H. Hu et al., "The Property and Applicability to Auto Industry of Natural Fiber Reinforced Composites", Applied Mechanics and Materials, Vol. 776, pp. 179-185, 2015. 5. R. R. Firly et al., "Numerical and Experimental Analysis of Flexural Properties of Bamboo Tali Laminate Composite", Advanced Materials Research, Vol. 1125, pp. 100- 105, 2015 6. C. Umachitra et al., "Effect of Mechanical Properties on Various Surface Treatment Processes of Banana/Cotton Woven Fabric Vinyl Ester Composite", Applied Mechanics and Materials, Vol. 867, pp. 41-47, 2017. 7. P. P. Gohil and A.A. Shaikh, "Experimental Evaluation for Mechanical Property of Unidirectional Banana Reinforced Polyester Composites", Advanced Materials 8. Lai, J.Botsis, J.Cugnoni and D.Coric, “An experimental numerical study of moisture absorption in an epoxy composite,” Composites Part A: Applied Science and Manufacturing, vol 43, no 7, pp 1053-1060, 2012 9. C.Mizera, D.Herak, P.Hrabe, and A.Kabutey, “Effect of temperature and moisture content on tensile behavior of false banana fiber (Ensete Ventricosum,” International Agrophysics, vol 31, no 3, pp. 377-82,2017 10. Z. Li, X. Wang, L. Wang, Properties of hemp fiber reinforced concrete composites. Composites: Part A; 2006; 37: 497-505. 101 11. Wang H. Design and optimization of chemical and mechanical processing of hemp for rotor spinning and textile applications, PhD Thesis. University of New South Wales; 2002. 12. Wang HM, Postle R, Kessler RW, Kessler W, Adaptive processing of Australia hemp for short fiber spinning. Bast fibrous plants on the turn of second and third millennium, Shenyang,China; 2001. 13. G. Lebrun , A. Couture, L. Laperrière, Tensile and impregnation behavior of unidirectional hemp/paper/epoxy and flax/paper/epoxy composites Laboratoire de Mécanique et Éco-Matériaux (LMEM), Université du Québec à Trois-Rivières (UQTR), C.P. 500, Trois-Rivières, Québec, Canada 14. S. Banerjee, B.V. Sankar, Mechanical properties of hybrid composites using finite element method based micromechanics, Composites: Part B;2014; 58: 318–327. 15. Chamis CC, Lark RF, Hybrid composites- State-of-the-art review: Analysis, design, application and fabrication. In: 18th Structures, structural dynamics and materials conference. 1977; 311–331. 16. Fu Shao-Yun, Hybrid effects on tensile properties of hybrid short-glass fiber-and short-carbon-fiber-reinforced polypropylene composites, Journal of Material Science;2001;36(5):1243–1251. 17. Sonparote PW, Lakkad SC, Mechanical properties of carbon/glass fiber reinforced hybrids. Fiber Science and Technology;1982;16(4):309–312. 18. Venkateshwaran N, Elayaperumal A, Sathiya GK, Prediction of tensile properties of hybrid-natural fiber composites. Composites: Part B; 2012;43(2):793–796 19. M. Ramesh, K. Palanikumar, K. Hemachandra Reddy, Comparative evaluation on properties of hybrid glass fiber- sisal/jute reinforced epoxy composites, Procedia Engineering; 2013;51:745 – 750. 20. M. Ramesh, K. Palanikumar, K. Hemachandra Reddy, Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites, Composites: Part B;2013; 48:1–9. 21. S.M. Sapuan, A. Leenie, M. Harimi, Y.K. Beng, Mechanical properties of woven banana fiber reinforced epoxy composites, Materials and Design; 2006;27: 689–693. 102 22. Zainudin E.S., Sapuan S.M., Abdan K., Mohamad M.T.M., Thermal degradation of banana pseudo-stem filled unplasticized polyvinyl chloride (UPVC) composites, Materials and Design; 2009; 30 : 557–562. 23. Samal S.K., Mohanty S., Nayak S.K., Banana/Glass Fiber-Reinforced Polypropylene Hybrid, Composites: Fabrication and Performance. Evaluation, Polymer-Plastics Technology and Engineering; 2009; 48(4): 397-414. DOI: 10.1080/03602550902725407. 24. Kumar S., Varma I.K., Degradation Studies of Polycaprolactone in Banana Fibers Reinforced Thermoplastics Composites, Journal of Macromolecular Science, Part B: Physics; 2006; 45(1): 153-164. 25. Kumar S., Misra R. K., Analysis of Banana Fibers Reinforced Low􀀀density Polyethylene/Poly(Є􀀀caprolactone) Composites, Soft Materials; 4(1): 1-13. DOI: 10.1080/15394450600823040. 26. Shaktawat V., Pothan L.A., Saxena N.S., Sharma K, Sharma T.P., Temperature Dependence of Thermo-Mechanical Properties of Banana Fiber-Reinforced Polyester Composites, Advanced Composite Materials; 2008; 17(1): 89-99. DOI: 10.1163/156855108X295672. 27. Zaman H.U., Khan M.A., Khan R.A., Physico-Mechanical and Degradation Properties of Banana Fiber/LDPE Composites: Effect of Acrylic Monomer and Starch, Composite Interfaces; 2011; 18(8): 685-700. DOI: 10.1163/156855412X626261. 28. H. Jiang, D. Pascal Kamdem, B. Bezubic and P. Ruede, "Mechanical properties of poly (vinyl chloride)/wood flour/glass fiber hybrid composites", Journal of Vinyl and Additive Technology, vol. 9, no. 3, pp. 138-145, 2003. Available: 10.1002/vnl.10075. 29. Kitano, T.; Haghani, E.; Tanegashima, T.; Saha, P. Polym Compos 2000, 21, 493. 30. Rozman, H. D.; Tay, G. S.; Kumar, R. N.; Abusamah, A.; Ismail, H.; Ishak, Z. A. M. Eur Polym J 2001, 37, 1283. 31. Rozman, H. D.; Tay, G. S.; Kumar, R. N.; Abusamah, A.; Ismail, 32. Arbelaiz, A.; Fernandez, B.; Cantero, G.; Llano-Ponte, R.; Valea, A.; Mondragon, Compos A 2005, 36, 1637. 103 33. Thwe, M. M.; Liao, K. J Mater Sci 2003, 38, 363. 34. Thwe, M. M.; Liao, K. Compos Sci Technol 2003, 63, 375. 35. Aseer J.R., Sankaranarayanasamy K., Jayabalan P., Natarajan R., Priya Dasan K., Morphological, Physical, and Thermal Properties of Chemically Treated Banana Fiber, Journal of Natural Fibers; 2013; 10(4): 365-380. DOI:10.1080/15440478.2013.824848. 36. A. Stocchi, B. Lauke, A. Vázquez, and C. Bernal, Compos. Part A-Appl. S., 38, 1337 (2007). 37. L. A. Pothan, P. Potschke, R. Habler, and S. Thomas, J. Compos. Mater., 39, 1007 (2005) 38. H. N. Dhakal, Z. Y. Zhang, M. O. W. Richardson, and O. A. Z. Errajhi, Compos. Struct., 81, 559 (2007). 39. M. Zampaloni, F. Pourboghrat, S. A. Yankovich, B. N. Rodgers, J. Moore, L. T. Drzal, A. K. Mohanty, and M. Misra, Compos. Part A-Appl. S., 38, 1569 (2007) 40. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003). 41. S. Shibata, Y. Cao, and I. Fukumoto, Polym. Test., 25, 142 (2006). 42. S. W. Kim, S. Oh, and K. Lee, Radiat. Phys. Chem., 76, 1711 (2007). 43. 13. Paiva Junior, C. Z., de Carvalho, L. H., Fonesca, V. M., Monteiro, S. N. and d’Almeida, J. R. M. (2004). Analysis of the Tensile Strength of Polyester/hybrid Ramie- Cotton Fabric Composites, Polymer Testing, 23: 131–135. 44. Jacob, M., Thomas, S. and Varughese, K. T. (2004). Natural Rubber Composites Reinforced with Sisal/oil Palm Hybrid Fibers: Tensile and Cure Characteristics, J. Appl. Polym. Sci., 93(5): 2305–2312. 45. Jacob, M., Thomas, S. and Varughese, K. T. (2004). Mechanical Properties of Sisal/oil Palm Hybrid Fiber Reinforced Natural Rubber Composites, Compos. Sci. Tech. 64(7–8): 955–965 46. Pavithran, C., Mukherjee, P. S., Brahmakumar, M. and Damodaran, A. D. (1991). Impact Properties of Sisal-glass Hybrid Laminates, J. Mater. Sci., 26: 455–459. 47. Bledzki, A. K. and Gassan, J. (1999). Composites Reinforced with Cellulose Based Fibers, Prog. Polym. Sci., 24: 221–274. 104 48. Ismail, H., Shuhelmy, S. and Edyham, M. (2002). The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fiber filled natural rubber composites. European Polymer Journal, 38(1), pp.39-47. 49. Ismail, H., Edyham, M. and Wirjosentono, B. (2002). Bamboo fiber filled natural rubber composites: the effects of filler loading and bonding agent. Polymer Testing, 21(2), pp.139-144. 50. Thwe MM, Liao K. Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Composites Part A 2002;33: 43–52. 51. Okubo K, Fujii T, Yamamoto Y. Development of bamboo-based polymer composites and their mechanical properties. Composites Part A 2004;35:377–83. 52. Thwe MM, Liao K. Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Composites Part A 2002;33: 43–52. 53. Davoodi MM, Sapuan SM, Ahmad D, Ali A, Khalina A, Jonoobi M. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 2010;31:4927–32. 54. Rassiah K, Ahmad MMHM. A review on mechanical properties of bamboo fiber reinforced polymer composite. Aust J Basic Appl Sci 2013;7:247–53 55. Nunna S, Chandra PR, Shrivastava S, Jalan A. A review on mechanical behavior of natural fiber based hybrid composites. J Reinf Plast Compos 2012;31:759–69. 56. Athijayamani A, Thiruchitrambalam M, Manikandan V, et al. Mechanical properties of natural fiber reinforced polyester hybrid composites. Int J Plast Technol 2010;14:104–16. 57. Kumar NM, Reddy GV, Naidu SV, Rani TS, Subha MCS. Mechanical properties of coir/glass fiber phenolic resin based composites. J Reinf Plast Compos 2009;28:2605–13. 58. Kalia S, Kaith B, Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 2009. 105 59. Adekunle K, Cho S-W, Patzelt C, Blomfeldt T, Skrifvars M. Impact and flexural properties of flax fabrics and Lyocell fiber-reinforced bio-based thermoset. J Reinf Plast Compos 2011;30:685–97. 60. Alawar A, Hamed AM, Al-Kaabi K. Characterization of treated date palm tree fiber as composite reinforcement. Compos Part B Eng 2009;40:601–6. 61. Zhu J, Zhu H, Njuguna J, Abhyankar H. Recent development of flax fibers and their reinforced composites based on different polymeric matrices. Materials (Basel) 2013;6:5171–98. 62. Anuar H, Zuraida A. Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fiber. Compos Part B Eng 2011;42:462–5 63. Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H. Kenaf reinforced biodegradable composite. Compos Sci Technol 2003;63:1281–6. 64. Azwa ZN, Yousif BF. Characteristics of kenaf fiber/epoxy composites subjected to thermal degradation. Polym Degrad Stab 2013;98:2752–9. 65. Wang Jinhua, Ramaswamy GN. One-step processing and bleaching of mechanically separated kenaf fibers: effects on physical and chemical properties. Text Res J 2003;73:339–44. 66. Chai, M., Bickerton, S., Bhattacharyya, D. and Das, R. (2012). Influence of natural fiber reinforcements on the flammability of bio-derived composite materials. Composites Part B: Engineering, 43(7), pp.2867-2874. 67. Holbery, J. and Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM, 58(11), pp.80-86. 68. Joseph, S., Oommen, Z. and Thomas, S. (2006). Environmental durability of bananafiber- reinforced phenol formaldehyde composites. Journal of Applied Polymer Science, 100(3), pp.2521-2531. 69. Kozlowski R., Wladyka-Przybylak M. (2004) Uses of Natural Fiber Reinforced Plastics. In: Wallenberger F.T., Weston N.E. (eds) Natural Fibers, Plastics and Composites. Springer, Boston, MA 106 70. Pothan, L., Thomas, S. and Neelakantan, N. (1997). Short Banana Fiber Reinforced Polyester Composites: Mechanical, Failure and Aging Characteristics. Journal of Reinforced Plastics and Composites, 16(8), pp.744-765. 71. Pothan, L., George, J. and Thomas, S. (2002). Effect of fiber surface treatments on the fiber–matrix interaction in banana fiber reinforced polyester composites. Composite Interfaces, 9(4), pp.335-353. 72. Pothan, L. and Thomas, S. (2004). Effect of hybridization and chemical modification on the water-absorption behavior of banana fiber-reinforced polyester composites. Journal of Applied Polymer Science, 91(6), pp.3856-3865. 73. Pothan, L., George, C., Jacob, M. and Thomas, S. (2007). Effect of Chemical Modification on the Mechanical and Electrical Properties of Banana Fiber Polyester Composites. Journal of Composite Materials, 41(19), pp.2371-2386 74. Saheb, D. and Jog, J. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18(4), pp.351-363. 75. Mukhopadhyay, S., Fangueiro, R., Arpaç, Y. and Şentürk, Ü. (2008). Banana Fibers Variability and Fracture Behaviour. Journal of Engineered Fibers and Fabrics, 3(2), p.155892500800300. 76. H. Singh, J. Inder, P. Singh, S. Singh, V. Dhawan, and S. K. Tiwari, “ScienceDirect,” Mater. Today Proc., vol. 5, no. 14, pp. 28427–28437, 2018. 77. M. A. Fuqua, S. Huo, and C. A. Ulven, “Natural Fiber Reinforced Composites,” vol. 3724, no. October, 2016. 78. T. Hojo, Z. Xu, Y. Yang, and H. Hamada, “Tensile Properties of Bamboo , Jute and Kenaf Mat- Reinforced Composite,” Energy Procedia, vol. 56, pp. 72–79, 2014. 79. S. D. Pandita, X. Yuan, and M. A. Manan, “Evaluation of jute / glass hybrid composite sandwich􀀀: Water resistance , impact properties and life cycle assessment,” no. December, 2013. 80. Muller, D. H. and Krobjilowski, A. (2003). New Discovery in the Properties of Composite Reinforced with Natural Fibers, Journal of Industrial Textiles, 33: 111130 107 81. Joshi, S. V., Drza, L. T., Mohanty, A. K. and Arora, S. (2004). Are Natural Fibers Composites Environmentally Superior to Glass Fiber Reinforced Composites, Composites Part A, 35: 371376. 82. Umair, S. (2006). Environmental Effect of Fiber Composite Materials-Study of Life Cycle Assessment of Materials Used for Ship Structure, MS Thesis Dissertation, Royal Institute of Technology, Stockholm. 83. Sonali Bag Brochure, https://bjmc.portal.gov.bd/sites/default/files/files/bjmc.portal.gov.bd/page/07706287_af1c_44a3_ 9d78_95b4a97439ab/Sonali%20Bag%20Brochure.pdf en_US
dc.identifier.uri http://hdl.handle.net/123456789/574
dc.description Supervised by Prof. Dr. Md. Anayet Ullah Patwari en_US
dc.description.abstract In the area of technological advancement, environmental awareness are always drawing the attention of the scientists for eco-friendly and recyclable products. Different kinds of composite materials are available in the world fabricated from different materials. Natural composite fabricated from natural fiber are attracted the researchers because of their unique characteristics like bio-degradable, availability, non-toxic nature etc. In this study, a new composite materials of epoxy matrix reinforced with three different fillers (banana fiber, jute fiber and jute fabricate biodegradable polythene) have been prepared by different method namely die molding process, hand-lay method and vacuum infusion method. Different composite materials have been made using different types of fiber size, fiber types using epoxy resin. Assessment has been made to find out the different mechanical properties and comparison has been made accordingly to find out the suitable method for the fabrication of the green composite materials. A mathematical model has been developed for the prediction and optimization of composite materials. The centre composite design protocol along with the response surface method has been adopted for compression testing of composite materials. A quadratic model has been proposed to predict the compressive load of the molded green composite materials within five levels of the two process parameters. Statistical tools are used for best fitting of the developed quadratic model and desirability analysis is coupled with it in order to find out the optimum process condition for which maximum compressive load is achieved. FEM simulation has also be made to predict the dynamic behavior of the fabricated composite and comparison has been made accordingly. From the experimental analysis, it has been observed that most of the conditions the fracture occurs at the middle position of the specimen and maximum tensile strength of 34.61 MPa obtained from the specimen using double layer hand lay method whereas specimen obtained from hand lay using small particle has the lowest tensile strength of 4.31 MPa considering all the methodological approaches. In compression testing the fabricated green composite cylinder can withstand maximum compressive load of 38KN. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology,Board Bazar, Gazipur, Bangladesh en_US
dc.title Development and Evaluation of a Green Composite Materials from Natural Fibers en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics