dc.identifier.citation |
1. Cheng, H.D., Shan, J., Ju, W., Guo, Y., and Zhang, L. Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognition 43, 1 (2010), 299-317. 2. Jemal, A., Siegel, R., Xu, J., and Ward, E. Cancer statistics 2010. CA Cancer J. for Clininicians 60, (2010), 227-300. 3. Cheng, H.D., Shi, X.J., Min, R., Hu, L.M., Cai, X.P., and Du, H.N. Approaches for automated detection and classification of masses in mammograms. Pattern Recognition 39, 4 (2006), 646-668. 4. Cheng, H.D., Cai, X., Chen, X., Hu, L., and Lou, X. Computer-aided detection and classification of microcalcifications in mammograms: A survey. Pattern Recognition 36, 12 (2003), 2967-2991. 5. Jesneck, J., Lo, J., and Baker, J. Breast mass lesions: Computer-aided diagnosis models with mammographic and sonographic descriptors. Radiology 244, 2 (2007), 390-398. 6. Shankar, P.M., Piccoli, C.W., Reid, J.M., Forsberg, F., and Goldberg, B.B. Application of the compound probability density function for characterization of breast masses in ultrasound B scans. Physics in Medicine & Biology 50, 10 (2005), 2241-2248. 7. Taylor, K.J.W., Merritt, C., Piccoli, C., Schmidt, R., Rouse, G., Fornage, B., Rubin, E., Georgian-Smith, D., Winsberg, F., Goldberg, B., and Mendelson, E. Ultrasound as a complement to mammography and breast examination to 86 characterize breast masses. Ultrasound in Medicine & Biology 28, 1 (2002), 19- 26. 8. Zhi, H., Ou, B., Luo, B.-M., Feng, X., Wen, Y.-L., and Yang, H.-Y. Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J. Ultrasound in Medicine 26, 6 (2007), 807-815. 9. Chang, R.-F., Wu, W.-J., Moon, W.K., and Chen, D.-R. Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis. Ultrasound in Medicine & Biology 29, 5 (2003), 679-686. 10. Sahiner, B., Chan, H.-P., Roubidoux, M.A., Hadjiiski, L.M., Helvie, M.A., Paramagul, C., Bailey, J., Nees, A.V., and Blane, C. Malignant and benign breast masses on 3D US volumetric images: Effect of computer-aided diagnosis on radiologist accuracy. Radiology 242, 3 (2007), 716-724. 11. Chen, C.-M., Chou, Y.-H., Han, K.-C., Hung, G.-S., Tiu, C.-M., Chiou, H.-J., and Chiou, S.-Y. Breast lesions on sonograms: Computer-aided diagnosis with nearly setting-independent features and artificial neural networks. Radiology 226, 2 (2003), 504-514. 12. Drukker, K., Giger, M.L., Horsch, K., Kupinski, M.A., Vyborny, C.J., and Mendelson, E.B. Computerized lesion detection on breast ultrasound. Medical Physics 29, 7 (2002), 1438-1446. 13. Andr, M.P., Galperin, M., Olson, L.K., Richman, K., Payrovi, S., and Phan, P. Improving the accuracy of diagnostic breast ultrasound. Acoustical Imaging 26, (2002), 453-460. 87 14. Huang, Y.-L., Chen,D.-R., and Liu, Y.-K. Breast cancer diagnosis using image retrieval for different ultrasonic systems. In International Conference on Image Processing, 2004, 2957-2960. 15. Anderson, B., Shyyan, R., Eniu, A., Smith, R., and Yip, C. Breast cancer in limited-resource countries: An overview of the breast health global initiative 2005 guidelines. Breast Journal 12, 1 (2006), S3-15. 16. Hwang, K.-H., H., Lee, J.G., Kim, J.H., Lee, H.-J. Om, K.-S., Yoon, M., and Choe, W. Computer aided diagnosis (CAD) of breast mass on ultrasonography and scintimammography. In Proceedings of 7th International Workshop on Enterprise Networking and Computing in Healthcare Industry, 2005, 187-189. 17. American-College-of-Radiology, ACR standards 2000-2001. 2000: Reston, VA. 18. Noble, J.A. and Boukerroui, D. Ultrasound image segmentation: A survey. IEEE Trans. on Medical Imaging 25, 8 (2006), 987-1010. 19. Joo, S., Moon, W.K., and Kim, H.C. Computer-aided diagnosis of solid breast nodules on ultrasound with digital image processing and artificial neural network. In 26th Annual IEEE International Conference Proceedings on Engineering in Medicine and Biology Society, 2004, 1397-13400. 20. Chen, D.-R., Chang, R.-F., and Huang, Y.-L. Computer-aided diagnosis applied to US of solid breast nodules by using neural networks. Radiology 213, 2 (1999), 407-412. 88 21. Madabhushi, A. and Metaxas, D.N. Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions. IEEE Trans. on Medical Imaging 22, 2 (2003), 155-169. 22. Xiaohui, H., Bruce, C.J., Pislaru, C., and Greenleaf, J.F. Segmenting highfrequency intracardiac ultrasound images of myocardium into infarcted, ischemic, and normal regions. IEEE Trans. on Medical Imaging 20, 12 (2001), 1373-1383. 23. Joo, S., Yang, Y.S., Moon, W.K., and Kim, H.C. Computer-aided diagnosis of solid breast nodules: Use of an artificial neural network based on multiple sonographic features. IEEE Trans. on Medical Imaging 23, 10 (2004), 1292- 1300. 24. Yeh, C.-K., Chen, Y.-S., Fan, W.-C., and Liao, Y.-Y. A disk expansion segmentation method for ultrasonic breast lesions. Pattern Recognition 42, 5 (2009), 596-606. 25. Horsch, K., Giger, M.L., Venta, L.A., and Vyborny, C.J. Computerized diagnosis of breast lesions on ultrasound. Medical Physics 29, 2 (2002), 157-164. 26. Horsch, K., Giger, M.L., Venta, L.A., and Vyborny, C.J. Automatic segmentation of breast lesions on ultrasound. Medical Physics 28, 8 (2001), 1652-1659. 27. Chang, R.F., Wu, W.J., Moon, W.K., and Chen, D.R. Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors. Breast Cancer Research and Treatment 89, 2 (2005), 179-185. 28. Liu, B., Cheng, H.D., Huang, J., Tian, J., Liu, J., and Tang, X., Automated segmentation of ultrasonic breast lesions using statistical texture classification and 89 active contour based on probability distance. Ultrasound in Medicine & Biology 35, 8 (2009), 1309-1324. 29. Sarti, A., Corsi, C., Mazzini, E., and Lamberti, C. Maximum likelihood segmentation with Rayleigh distribution of ultrasound images. Computers in Cardiology 31 (2004), 329-332. 30. Chang, R.-F., Wu, W.-J., Moon, W.K., Chen, W.-M., Lee, W., and Chen, D.-R. Segmentation of breast tumor in three-dimensional ultrasound images using threedimensional discrete active contour model. Ultrasound in Medicine & Biology 29, 11 (2003), 1571-1581. 31. Chen, D.-R., Chang, R.-F., Wu, W.-J., Moon, W.K., and Wu, W.-L. 3-D breast ultrasound segmentation using active contour model. Ultrasound in Medicine & Biology 29, 7 (2003), 1017-1026. 32. Chang, R.F., Wu, W.J., Tseng, C., Chen, D.R., and Moon, W.K. 3-D snake for US in margin evaluation for malignant breast tumor excision using mammotome. IEEE Trans. on Information Technology in Biomedicine 7, 3 (2003), 197-201. 33. Sahiner, B., Chan, H.-P., Roubidoux, M.A., Helvie, M.A., Hadjiiski, L.M., Ramachandran, A., Paramagul, C., LeCarpentier, G.L., Nees, A., and Blane, C. Computerized characterization of breast masses on three-dimensional ultrasound volumes. Medical Physics 31, 4 (2004), 744- 754. 34. Boukerroui, D., Baskurt, A., Noble, J.A., and Basset, O. Segmentation of ultrasound images--multiresolution 2D and 3D algorithm based on global and local statistics. Pattern Recognition Letters 24, 4-5 (2003), 779-790. 90 35. Xiao, G., Brady, M., Noble, J.A., and Zhang, Y. Segmentation of ultrasound Bmode images with intensity inhomogeneity correction. IEEE Trans. on Medical Imaging 21, 1 (2002), 48-57. 36. Cheng, H.D., Hu, L.M., Tian, J.W., and Sun, L., A novel Markov random field segmentation algorithm and its application to breast ultrasound image analysis. In 6th International Conference on Computer Vision, Pattern Recognition and Image Processing, 2005, 644-647. 37. Boukerroui, D., Basset, O., Guérin, N., and Baskurt, A. Multiresolution texture based adaptive clustering algorithm for breast lesion segmentation. European J. Ultrasound 8, 2 (1998), 135-144. 38. Christopher, L.A., Delp, E.J., Meyer, C.R., and Carson, P.L. 3-D Bayesian ultrasound breast image segmentation using the EM/MPM algorithm. In Proceedings of IEEE International Symposium on Biomedical Imaging, 2002, 86-89. 39. Kotropoulos, C. and Pitas, I. Segmentation of ultrasonic images using support vector machines. Pattern Recogniton Letters 24, 4-5 (2003), 715-727. 40. Zhan, Y. and Shen, D. Deformable segmentation of 3-D ultrasound prostate images using statistical texture matching method. IEEE Trans. on Medical Imaging 25, 3 (2006), 256-272. 41. Wu, H.-M. and Lu, H.H.-S. Iterative sliced inverse regression for segmentation of ultrasound and MR images. Pattern Recognition 40, 12 (2007), 3492-3502. 91 42. Dokur, Z. and Ölmez, T. Segmentation of ultrasound images by using a hybrid neural network. Pattern Recognition Letters 23, 14 (2002), 1825-1836. 43. Işcan, Z., Kurnaz, M.N., Dokur, Z., and Ölmez, T. Letter: Ultrasound image segmentation by using wavelet transform and self-organizing neural network. Neural Information Processing - Letters and Reviews 10, 8-9 (2006). 44. Huang, Y.-L. and Chen, D.-R. Watershed segmentation for breast tumor in 2-D sonography. Ultrasound in Medicine & Biology 30, 5 (2004), 625-632. 45. Gomez, W., Leija, L., Alvarenga, A.V., Infantosi, A.F.C., and Pereira, W.C.A. Computerized lesion segmentation of breast ultrasound based on markercontrolled watershed transformation. Medical Physics 37, 1 (2010), 82-95. 46. Huang, C.S., Wu, C.Y., Chu, J.S., Lin, J.H., Hsu, S.M., and Chang, K.J. Microcalcifications of non-palpable breast lesions detected by ultrasonography: correlation with mammography and histopathology. Ultrasound in Obstetrics and Gynecology 13, 6 (1999), 431-436. 47. Chen, C.-M., Chou, Y.-H., Chen, C.S.K., Cheng, J.-Z., Ou, Y.-F., Yeh, F.-C., and Chen, K.-W. Cell-competition algorithm: A new segmentation algorithm for multiple objects with irregular boundaries in ultrasound images. Ultrasound in Medicine & Biology 31, 12 (2005), 1647-1664. 48. Cheng, J.-Z., Chou, Y.-H., Huang, C.-S., Chang, Y.-C., Tiu, C.-M., Yeh, F.-C., Chen, K.- W., Tsou, C.-H., and Chen, C.-M. ACCOMP: Augmented cell competition algorithm for breast lesion demarcation in sonography. Medical Physics 37, 12 (2010), 6240-6252. 49.https://www.cancerquest.org/index.php/patients/detectionanddiagnosis/ultrasound?fbclid= IwAR3sAb9_0uScu2nJACb89bW_i_UePuncOHoiT0KKbvVGABVB1tBCcuHXzbY#benefi ts-disadvantages |
en_US |