Design and Analysis of Air Gap Based Semi-Elliptical Coupler

Show simple item record

dc.contributor.author Sumon, Md. Saiful Islam
dc.contributor.author Tazwar, Mahir
dc.contributor.author Khandaker, Sakib Mahtab
dc.date.accessioned 2020-11-03T14:22:45Z
dc.date.available 2020-11-03T14:22:45Z
dc.date.issued 2018-11-15
dc.identifier.citation [1]E. Ozbay,Plasmonics: Merging photonics and electronics at nanoscale dimen- sions, Science 311 (5758) (2006) 189–193. doi:10.1126/science.1114849. URL https://doi.org/10.1126 2Fscience.1114849 [2]R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang,A hybrid plas- monic waveguide for subwavelength confinement and long-range propagation, Nature Photonics 2 (8) (2008) 496–500. doi:10.1038/nphoton.2008.131. URL https://doi.org/10.1038 2Fnphoton.2008.131 [3]D. K. Gramotnev, S. I. Bozhevolnyi,Plasmonics beyond the diffraction limit, Nature Photonics 4 (2) (2010) 83–91. doi:10.1038/nphoton.2009.282. URL https://doi.org/10.1038 2Fnphoton.2009.282 [4]S. Kawata, Y. Inouye, P. Verma,Plasmonics for near-field nano-imaging and superlensing, Nature Photonics 3 (7) (2009) 388–394. doi:10.1038/nphoton. 2009.111. URL https://doi.org/10.1038 2Fnphoton.2009.111 [5]K. A. Willets, R. P. V. Duyne,Localized surface plasmon resonance spectroscopy and sensing, Annual Review of Physical Chemistry 58 (1) (2007) 267–297. doi: 10.1146/annurev.physchem.58.032806.104607. URL https://doi.org/10.1146 2Fannurev.physchem.58.032806.104607 [6]K. R. Catchpole, A. Polman,Plasmonic solar cells, Optics Express 16 (26) (2008) 21793. doi:10.1364/oe.16.021793. URL https://doi.org/10.1364 2Foe.16.021793 30 [7]J. Henzie, M. H. Lee, T. W. Odom,Multiscale patterning of plasmonic meta- materials, Nature Nanotechnology 2 (9) (2007) 549–554. doi:10.1038/nnano. 2007.252. URL https://doi.org/10.1038 2Fnnano.2007.252 [8]S. J. Tan, M. J. Campolongo, D. Luo, W. Cheng,Building plasmonic nanostruc- tures with DNA, Nature Nanotechnology 6 (5) (2011) 268–276. doi:10.1038/ nnano.2011.49. URL https://doi.org/10.1038 2Fnnano.2011.49 [9]S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, X. Zhang,Feedback- driven self-assembly of symmetry-breaking optical metamaterials in solution, Nature Nanotechnology 9 (12) (2014) 1002–1006. doi:10.1038/nnano.2014. 243. URL https://doi.org/10.1038 2Fnnano.2014.243 [10]S. A. Maier, P. E. Barclay, T. J. Johnson, M. D. Friedman, O. Painter,Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing, Ap- plied Physics Letters 84 (20) (2004) 3990–3992. doi:10.1063/1.1753060. URL https://doi.org/10.1063 2F1.1753060 [11]L. Chen, J. Shakya, M. Lipson,Subwavelength confinement in an integrated metal slot waveguide on silicon, Optics Letters 31 (14) (2006) 2133. doi:10. 1364/ol.31.002133. URL https://doi.org/10.1364 2Fol.31.002133 [12]R. F. Oulton, G. Bartal, D. F. P. Pile, X. Zhang,Confinement and propagation characteristics of subwavelength plasmonic modes, New Journal of Physics 10 (10) (2008) 105018. doi:10.1088/1367-2630/10/10/105018. URL https://doi.org/10.1088 2F1367-2630 2F10 2F10 2F105018 [13]B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn,Dielectric stripes on gold as surface plas- mon waveguides, Applied Physics Letters 88 (9) (2006) 094104. doi:10.1063/ 1.2180448. URL https://doi.org/10.1063 2F1.2180448 [14]N. Fang,Sub-diffraction-limited optical imaging with a silver superlens, Sci- ence 308 (5721) (2005) 534–537. doi:10.1126/science.1108759. URL https://doi.org/10.1126 2Fscience.1108759 [15]J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang,Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies, Nature Communications 1 (9) (2010) 143. doi:10.1038/ncomms1148. URL https://doi.org/10.1038 2Fncomms1148 [16]M. G. Saber, R. H. Sagor, A. A. Noor, M. T. Al-Amin,Numerical investigation of SPP propagation at the nano-scale MDM waveguides with a combiner, Pho- tonics Letters of Poland 5 (3). doi:10.4302/plp.2013.3.12. URL https://doi.org/10.4302 2Fplp.2013.3.12 [17]R. A. Wahsheh, Z. Lu, M. A. G. Abushagur,Nanoplasmonic couplers and split- ters, Optics Express 17 (21) (2009) 19033. doi:10.1364/oe.17.019033. URL https://doi.org/10.1364 2Foe.17.019033 [18]J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion,Near-field characterization of bragg mirrors en- graved in surface plasmon waveguides, Physical Review B 70 (23). doi: 10.1103/physrevb.70.235406. URL https://doi.org/10.1103 2Fphysrevb.70.235406 [19]G. Veronis, S. Fan,Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plas- monic waveguides, Optics Express 15 (3) (2007) 1211. doi:10.1364/oe.15. 001211. URL https://doi.org/10.1364 2Foe.15.001211 [20]R. A. Wahsheh, Z. Lu, M. A. G. Abushagur,Nanoplasmonic air-slot coupler: Design and fabrication, in: Frontiers in Optics 2012/Laser Science XXVIII, OSA, 2012. doi:10.1364/fio.2012.fth4a.6. URL https://doi.org/10.1364 2Ffio.2012.fth4a.6 [21]P. Ginzburg, M. Orenstein,Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching, Optics Express 15 (11) (2007) 6762. doi: 10.1364/oe.15.006762. URL https://doi.org/10.1364 2Foe.15.006762 [22]D. F. P. Pile, D. K. Gramotnev,Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides, Applied Physics Letters 89 (4) (2006) 041111. doi:10.1063/1.2236219. URL https://doi.org/10.1063 2F1.2236219 [23]R. A. Wahsheh, M. A. G. Abushagur,Experimental and theoretical investiga- tions of an air-slot coupler between dielectric and plasmonic waveguides, Op- tics Express 24 (8) (2016) 8237. doi:10.1364/oe.24.008237. URL https://doi.org/10.1364 2Foe.24.008237 [24]T. Weiland, A discretization method for the solution of maxwell’s equations for six-component fields.-electronics and communication,(aeü), vol. 31. [25]E. D. Palik, Handbook of Optical Constants of Solids, Author and Subject In- dices for Volumes I, II, and III, Elsevier, 1998. [26]J.-P. Berenger,A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics 114 (2) (1994) 185–200. doi:10.1006/ jcph.1994.1159. URL https://doi.org/10.1006 2Fjcph.1994.1159 [27]M. G. Saber, R. H. Sagor,Analysis of cuprous oxide-based ultra-compact nanoplasmonic coupler, Applied Nanoscience 5 (2) (2014) 217–221. doi:10. 1007/s13204-014-0308-3. URL https://doi.org/10.1007 2Fs13204-014-0308-3 [28]M. G. Saber, R. H. Sagor,Design and study of nano-plasmonic couplers us- ing aluminium arsenide and alumina, IET Optoelectronics 9 (3) (2015) 125–130. doi:10.1049/iet-opt.2014.0027. URL https://doi.org/10.1049 2Fiet-opt.2014.0027 [29]M. G. Saber, R. H. Sagor,Design and analysis of a gallium lanthanum sulfide based nanoplasmonic coupler yielding 67% efficiency, Optik 125 (18) (2014) 5374–5377. doi:10.1016/j.ijleo.2014.06.034. URL https://doi.org/10.1016 2Fj.ijleo.2014.06.034 en_US
dc.identifier.uri http://hdl.handle.net/123456789/645
dc.description Supervised by Dr. Rakibul Hasan Sagor, Assistant Professor, Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Boardbazar, Gazipur - 1704. en_US
dc.description.abstract Efficient coupling of light between the dielectric waveguide and plasmonic waveg- uide has been investigated theoretically in three dimensions. An air gap based nanoplasmonic semi-elliptical structure of Silicon (Si) is used as a coupler which connects these waveguides. Finite Integration Technique (FIT) has been deployed for this investigation. Theoretical coupling efficiency of ∼ 85% at optical commu- nication wavelength (1.55 µm) has been achieved through numerical simulations. The dependency of coupling efficiency has been investigated by varying the curva- ture of the semi-elliptical coupler, the air gap width between the two waveguides and the plasmonic width of the Ag-Air-Ag waveguide, and an optimal dimension of the proposed structure has been obtained. Different performance parameters like coupling efficiency, reflection coefficient, Voltage Standing Wave Ratio (VSWR), and return loss have been analyzed with the obtained optimal dimensions. Broad range of operating frequency, tolerance to angular and air gap misalignment and excellent agreement to a demonstrated experimental coupler has made the proposed coupler distinctive. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology, Board Bazar, Gazipur, Bangladesh en_US
dc.title Design and Analysis of Air Gap Based Semi-Elliptical Coupler en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics