dc.identifier.citation |
[1]E. Ozbay,Plasmonics: Merging photonics and electronics at nanoscale dimen- sions, Science 311 (5758) (2006) 189–193. doi:10.1126/science.1114849. URL https://doi.org/10.1126 2Fscience.1114849 [2]R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, X. Zhang,A hybrid plas- monic waveguide for subwavelength confinement and long-range propagation, Nature Photonics 2 (8) (2008) 496–500. doi:10.1038/nphoton.2008.131. URL https://doi.org/10.1038 2Fnphoton.2008.131 [3]D. K. Gramotnev, S. I. Bozhevolnyi,Plasmonics beyond the diffraction limit, Nature Photonics 4 (2) (2010) 83–91. doi:10.1038/nphoton.2009.282. URL https://doi.org/10.1038 2Fnphoton.2009.282 [4]S. Kawata, Y. Inouye, P. Verma,Plasmonics for near-field nano-imaging and superlensing, Nature Photonics 3 (7) (2009) 388–394. doi:10.1038/nphoton. 2009.111. URL https://doi.org/10.1038 2Fnphoton.2009.111 [5]K. A. Willets, R. P. V. Duyne,Localized surface plasmon resonance spectroscopy and sensing, Annual Review of Physical Chemistry 58 (1) (2007) 267–297. doi: 10.1146/annurev.physchem.58.032806.104607. URL https://doi.org/10.1146 2Fannurev.physchem.58.032806.104607 [6]K. R. Catchpole, A. Polman,Plasmonic solar cells, Optics Express 16 (26) (2008) 21793. doi:10.1364/oe.16.021793. URL https://doi.org/10.1364 2Foe.16.021793 30 [7]J. Henzie, M. H. Lee, T. W. Odom,Multiscale patterning of plasmonic meta- materials, Nature Nanotechnology 2 (9) (2007) 549–554. doi:10.1038/nnano. 2007.252. URL https://doi.org/10.1038 2Fnnano.2007.252 [8]S. J. Tan, M. J. Campolongo, D. Luo, W. Cheng,Building plasmonic nanostruc- tures with DNA, Nature Nanotechnology 6 (5) (2011) 268–276. doi:10.1038/ nnano.2011.49. URL https://doi.org/10.1038 2Fnnano.2011.49 [9]S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, X. Zhang,Feedback- driven self-assembly of symmetry-breaking optical metamaterials in solution, Nature Nanotechnology 9 (12) (2014) 1002–1006. doi:10.1038/nnano.2014. 243. URL https://doi.org/10.1038 2Fnnano.2014.243 [10]S. A. Maier, P. E. Barclay, T. J. Johnson, M. D. Friedman, O. Painter,Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing, Ap- plied Physics Letters 84 (20) (2004) 3990–3992. doi:10.1063/1.1753060. URL https://doi.org/10.1063 2F1.1753060 [11]L. Chen, J. Shakya, M. Lipson,Subwavelength confinement in an integrated metal slot waveguide on silicon, Optics Letters 31 (14) (2006) 2133. doi:10. 1364/ol.31.002133. URL https://doi.org/10.1364 2Fol.31.002133 [12]R. F. Oulton, G. Bartal, D. F. P. Pile, X. Zhang,Confinement and propagation characteristics of subwavelength plasmonic modes, New Journal of Physics 10 (10) (2008) 105018. doi:10.1088/1367-2630/10/10/105018. URL https://doi.org/10.1088 2F1367-2630 2F10 2F10 2F105018 [13]B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn,Dielectric stripes on gold as surface plas- mon waveguides, Applied Physics Letters 88 (9) (2006) 094104. doi:10.1063/ 1.2180448. URL https://doi.org/10.1063 2F1.2180448 [14]N. Fang,Sub-diffraction-limited optical imaging with a silver superlens, Sci- ence 308 (5721) (2005) 534–537. doi:10.1126/science.1108759. URL https://doi.org/10.1126 2Fscience.1108759 [15]J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, X. Zhang,Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies, Nature Communications 1 (9) (2010) 143. doi:10.1038/ncomms1148. URL https://doi.org/10.1038 2Fncomms1148 [16]M. G. Saber, R. H. Sagor, A. A. Noor, M. T. Al-Amin,Numerical investigation of SPP propagation at the nano-scale MDM waveguides with a combiner, Pho- tonics Letters of Poland 5 (3). doi:10.4302/plp.2013.3.12. URL https://doi.org/10.4302 2Fplp.2013.3.12 [17]R. A. Wahsheh, Z. Lu, M. A. G. Abushagur,Nanoplasmonic couplers and split- ters, Optics Express 17 (21) (2009) 19033. doi:10.1364/oe.17.019033. URL https://doi.org/10.1364 2Foe.17.019033 [18]J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. González, A.-L. Baudrion,Near-field characterization of bragg mirrors en- graved in surface plasmon waveguides, Physical Review B 70 (23). doi: 10.1103/physrevb.70.235406. URL https://doi.org/10.1103 2Fphysrevb.70.235406 [19]G. Veronis, S. Fan,Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plas- monic waveguides, Optics Express 15 (3) (2007) 1211. doi:10.1364/oe.15. 001211. URL https://doi.org/10.1364 2Foe.15.001211 [20]R. A. Wahsheh, Z. Lu, M. A. G. Abushagur,Nanoplasmonic air-slot coupler: Design and fabrication, in: Frontiers in Optics 2012/Laser Science XXVIII, OSA, 2012. doi:10.1364/fio.2012.fth4a.6. URL https://doi.org/10.1364 2Ffio.2012.fth4a.6 [21]P. Ginzburg, M. Orenstein,Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching, Optics Express 15 (11) (2007) 6762. doi: 10.1364/oe.15.006762. URL https://doi.org/10.1364 2Foe.15.006762 [22]D. F. P. Pile, D. K. Gramotnev,Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides, Applied Physics Letters 89 (4) (2006) 041111. doi:10.1063/1.2236219. URL https://doi.org/10.1063 2F1.2236219 [23]R. A. Wahsheh, M. A. G. Abushagur,Experimental and theoretical investiga- tions of an air-slot coupler between dielectric and plasmonic waveguides, Op- tics Express 24 (8) (2016) 8237. doi:10.1364/oe.24.008237. URL https://doi.org/10.1364 2Foe.24.008237 [24]T. Weiland, A discretization method for the solution of maxwell’s equations for six-component fields.-electronics and communication,(aeü), vol. 31. [25]E. D. Palik, Handbook of Optical Constants of Solids, Author and Subject In- dices for Volumes I, II, and III, Elsevier, 1998. [26]J.-P. Berenger,A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics 114 (2) (1994) 185–200. doi:10.1006/ jcph.1994.1159. URL https://doi.org/10.1006 2Fjcph.1994.1159 [27]M. G. Saber, R. H. Sagor,Analysis of cuprous oxide-based ultra-compact nanoplasmonic coupler, Applied Nanoscience 5 (2) (2014) 217–221. doi:10. 1007/s13204-014-0308-3. URL https://doi.org/10.1007 2Fs13204-014-0308-3 [28]M. G. Saber, R. H. Sagor,Design and study of nano-plasmonic couplers us- ing aluminium arsenide and alumina, IET Optoelectronics 9 (3) (2015) 125–130. doi:10.1049/iet-opt.2014.0027. URL https://doi.org/10.1049 2Fiet-opt.2014.0027 [29]M. G. Saber, R. H. Sagor,Design and analysis of a gallium lanthanum sulfide based nanoplasmonic coupler yielding 67% efficiency, Optik 125 (18) (2014) 5374–5377. doi:10.1016/j.ijleo.2014.06.034. URL https://doi.org/10.1016 2Fj.ijleo.2014.06.034 |
en_US |