Photonic Crystal Fiber Based Optical Fiber Core Design For Sensing and Transmission in Terahertz Spectrum

Show simple item record

dc.contributor.author Islam, Shazedul
dc.contributor.author Saroar, Abu Nahid
dc.contributor.author Talha, Khandoker Md. Abu
dc.contributor.author Rahman, Mushfiqur
dc.date.accessioned 2020-11-04T16:16:12Z
dc.date.available 2020-11-04T16:16:12Z
dc.date.issued 2018-11-15
dc.identifier.citation 1. O. Sidek and M. H. B. Afzal, "A review paper on fiber-optic sensors and application of pDMS materials for enhanced performance," in Business, Engineering and Industrial Applications (ISBEIA), 2011 IEEE Symposium on, (IEEE, 2011), 458-463. 2. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," JOSA 68, 1196-1201 (1978). 3. J. Knight, T. Birks, P. S. J. Russell, and D. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Optics letters 21, 1547-1549 (1996). 4. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, "Photonic crystal fibres for chemical sensing and photochemistry," Chemical Society Reviews 42, 8629-8648 (2013). 5. P. Blanchard, J. Burnett, G. Erry, A. Greenaway, P. Harrison, B. Mangan, J. Knight, P. S. J. Russell, M. Gander, and R. McBride, "Two-dimensional bend sensing with a single, multi-core optical fibre," Smart materials and structures 9, 132 (2000). 6. H. V. Thakur, S. M. Nalawade, Y. Saxena, and K. Grattan, "All-fiber embedded PM-PCF vibration sensor for Structural Health Monitoring of composite," Sensors and Actuators A: Physical 167, 204-212 (2011). 7. G. Rajan, M. Ramakrishnan, Y. Semenova, A. Domanski, A. Boczkowska, T. Wolinski, and G. Farrell, "Analysis of vibration measurements in a composite material using an embedded PM-PCF polarimetric sensor and an FBG sensor," IEEE Sensors Journal 12, 1365-1371 (2012). 8. W. Bock, J. Chen, P. Mikulic, T. Eftimov, and M. Korwin-Pawlowski, "Pressure sensing using periodically tapered long-period gratings written in photonic crystal fibres," Measurement Science and Technology 18, 3098 (2007). 9. L. Zou, X. Bao, S. Afshar, and L. Chen, "Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber," Optics letters 29, 1485-1487 (2004). 10. J. Broeng, T. Søndergaard, S. E. Barkou, P. M. Barbeito, and A. Bjarklev, "Waveguidance by the photonic bandgap effect in optical fibres," Journal of Optics A: Pure and Applied Optics 1, 477 (1999). 11. M. Foroni, D. Passaro, F. Poli, A. Cucinotta, S. Selleri, J. Lægsgaard, and A. Bjarklev, "Confinement loss spectral behavior in hollow-core Bragg fibers," Optics letters 32, 3164- 3166 (2007). 12. A. L. Cruz, C. Cordeiro, and M. A. Franco, "3D Printed Hollow-Core Terahertz Fibers," Fibers 6, 43 (2018). 13. R. Cregan, B. Mangan, J. Knight, T. Birks, P. S. J. Russell, P. Roberts, and D. Allan, "Single-mode photonic band gap guidance of light in air," science 285, 1537-1539 (1999). 14. G. Humbert, J. Knight, G. Bouwmans, P. S. J. Russell, D. Williams, P. Roberts, and B. Mangan, "Hollow core photonic crystal fibers for beam delivery," Optics express 12, 1477- 1484 (2004). 15. F. Gérôme, K. Cook, A. George, W. Wadsworth, and J. Knight, "Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression," Optics express 15, 7126-7131 (2007). 16. F. Gérôme, P. Dupriez, J. Clowes, J. Knight, and W. Wadsworth, "High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling," Optics express 16, 2381-2386 (2008). 17. A. Urich, R. Maier, F. Yu, J. C. Knight, D. Hand, and J. Shephard, "Flexible delivery of Er: YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures," Biomedical optics express 4, 193-205 (2013). 18. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, "THz propagation in kagome hollow-core microstructured fibers," Optics express 19, 18470-18478 (2011). 19. A. Cubillas, M. Silva-Lopez, J. Lazaro, O. Conde, M. N. Petrovich, and J. M. Lopez- Higuera, "Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm," Optics Express 15, 17570-17576 (2007). 20. A. Cubillas, J. Lazaro, M. Silva-Lopez, O. Conde, M. Petrovich, and J. Lopez-Higuera, "Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell," Electronics Letters 44, 403-405 (2008). 21. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, and A. Carlsen, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Optics letters 29, 1974-1976 (2004). 22. N. Burani and J. Lægsgaard, "Perturbative modeling of Bragg-grating-based biosensors in photonic-crystal fibers," JOSA B 22, 2487-2493 (2005). 23. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Optics Express 14, 8224-8231 (2006). 24. R. A. Rinsky, A. B. Smith, R. Hornung, T. G. Filloon, R. J. Young, A. H. Okun, and P. J. Landrigan, "Benzene and leukemia," New England journal of medicine 316, 1044-1050 (1987). 25. R. B. Hayes, M. Dosemeci, S. Wacholder, L. B. Travis, N. Rothman, R. N. Hoover, M. S. Linet, S.-N. Yin, G.-L. Li, and C.-Y. Li, "Benzene and the dose-related incidence of hematologic neoplasms in China," Journal of the National Cancer Institute 89, 1065-1071 (1997). 26. E. Lynge, A. Andersen, R. Nilsson, L. Barlow, E. Pukkala, R. Nordlinder, P. Boffetta, P. Grandjean, P. Heikkiia, and L.-G. Horte, "Risk of cancer and exposure to gasoline vapors," American journal of epidemiology 145, 449-458 (1997). 27. O. S. Wolfbeis, "Fiber-optic chemical sensors and biosensors," Analytical chemistry 80, 4269-4283 (2008). 28. M. H. B. Afzal, "Introduction to fibre-optic sensing system and practical applications in water quality management," in Computing, Communications and Networking Technologies (ICCCNT), 2013 Fourth International Conference on, (IEEE, 2013), 1-9. 29. K. Fidanboylu and H. Efendioglu, "Fiber optic sensors and their applications," in 5th International Advanced Technologies Symposium (IATS’09), 2009), 30. U. D. o. Health and H. Services, "Hazardous substances data bank (HSDB, online database)," National Toxicology Information Program, National Library of Medicine, Bethesda, MD (1993). 31. U. D. o. Health and H. Services, "Registry of toxic effects of chemical substances (RTECS, online database)," National Toxicology Information Program, National Library of Medicine, Bethesda, MD 4(1993). 32. R. P. Pohanish, Sittig's handbook of toxic and hazardous chemicals and carcinogens (William Andrew, 2017). 33. M. S. Islam, J. Sultana, K. Ahmed, M. R. Islam, A. Dinovitser, B. W.-H. Ng, and D. Abbott, "A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime," IEEE Sensors Journal 18, 575-582 (2018). 34. K. Ahmed, M. I. Islam, B. K. Paul, M. S. Islam, S. Sen, S. Chowdhury, M. S. Uddin, S. Asaduzzaman, and A. N. Bahar, "Effect of photonic crystal fiber background materials in sensing and communication applications," Materials Discovery 7, 8-14 (2017). 35. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, "Teflon photonic crystal fiber as terahertz waveguide," Japanese Journal of Applied Physics 43, L317 (2004). 36. M. S. Islam, J. Sultana, S. Rana, M. R. Islam, M. Faisal, S. F. Kaijage, and D. Abbott, "Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission," Optical Fiber Technology 34, 6-11 (2017). 37. J. Anthony, R. Leonhardt, A. Argyros, and M. C. Large, "Characterization of a microstructured Zeonex terahertz fiber," JOSA B 28, 1013-1018 (2011). 38. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, "Localized biosensing with TOPAS microstructured polymer optical fiber: Erratum," Optics letters 32, 460-462 (2007). 39. M. Polyanskiy, "RefractiveIndex. INFO-Refractive index database," RefractiveIndex. INFO,[Online]. Available: http://refractiveindex. info/.[Accessed 25 Jan 2016] (2018). 40. M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, "Terahertz sensing in a hollow core photonic crystal fiber," IEEE Sensors Journal 18, 4073-4080 (2018). 41. W. Frei, "Using perfectly matched layers and scattering boundary conditions for wave electromagnetics problems," URL https://www. comsol. com/blogs/usingperfectly- matched-layers-and-scattering-boundary-conditions-for-waveelectromagnetics- problems/.(referenced 1.6. 2017) (2015). 42. H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler, L. Lima-Marques, and T. M. Monro, "3D-printed extrusion dies: a versatile approach to optical material processing," Optical Materials Express 4, 1494-1504 (2014). 43. R. Islam, M. S. Habib, G. Hasanuzzaman, S. Rana, M. A. Sadath, and C. Markos, "A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission," IEEE Photon. Technol. Lett. 28, 1537-1540 (2016). 44. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, "Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers," Optics Express 16, 7-12 (2008). 45. S. Atakaramians, S. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, "Low loss, low dispersion and highly birefringent terahertz porous fibers," Optics communications 282, 36-38 (2009). 46. H. Chen, D. Chen, and Z. Hong, "Squeezed lattice elliptical-hole terahertz fiber with high birefringence," Applied optics 48, 3943-3947 (2009). 47. G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, "Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers," Sensors 13, 3242-3251 (2013). 48. J. Sultana, M. S. Islam, J. Atai, M. R. Islam, and D. Abbott, "Near-zero dispersion flattened, low-loss porous-core waveguide design for terahertz signal transmission," Optical Engineering 56, 076114 (2017). 49. S. Asaduzzaman, K. Ahmed, T. Bhuiyan, and T. Farah, "Hybrid photonic crystal fiber in chemical sensing," SpringerPlus 5, 748 (2016). 50. K. Lee and S. A. Asher, "Photonic crystal chemical sensors: pH and ionic strength," Journal of the American Chemical Society 122, 9534-9537 (2000). 51. H. Ademgil and S. Haxha, "PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications," Sensors 15, 31833-31842 (2015). 52. B. K. Paul, M. S. Islam, K. Ahmed, and S. Asaduzzaman, "Alcohol sensing over O+ E+ S+ C+ L+ U transmission band based on porous cored octagonal photonic crystal fiber," Photonic Sensors 7, 123-130 (2017). 53. S. Asaduzzaman and K. Ahmed, "Microarray-core based circular photonic crystal fiber for high chemical sensing capacity with low confinement loss," Optica Applicata 47(2017). 54. S. Chowdhury, S. Sen, K. Ahmed, and S. Asaduzzaman, "Design of highly sensible porous shaped photonic crystal fiber with strong confinement field for optical sensing," Optik- International Journal for Light and Electron Optics 142, 541-549 (2017). 55. M. S. Islam, B. K. Paul, K. Ahmed, S. Asaduzzaman, M. I. Islam, S. Chowdhury, S. Sen, and A. N. Bahar, "Liquid-infiltrated photonic crystal fiber for sensing purpose: design and analysis," Alexandria Engineering Journal (2017). 56. S. Chowdhury, S. Sen, K. Ahmed, B. K. Paul, M. B. A. Miah, S. Asaduzzaman, M. S. Islam, and M. I. Islam, "Porous shaped photonic crystal fiber with strong confinement field in sensing applications: design and analysis," Sensing and Bio-Sensing Research 13, 63- 69 (2017) 57. Shaghik Atakaramians, Shahraam Afshar V., Heike Ebendorff-Heidepriem, Michael Nagel, Bernd M. Fischer, Derek Abbott, and Tanya M. Monro, "THz porous fibers: design, fabrication and experimental characterization," Opt. Express 17, 14053-14062 (2009). 58. J. C. Travers et al., “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Amer. B, vol. 28, no. 12, pp. A11–A26, 2011. 59. M. A. Hossain and Y. Namihira, “Light source design using Kagomelattice hollow core photonic crystal fibers,” Opt. Rev., vol. 21, no. 5, pp. 490–495, 2014. 60. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Exp., vol. 19, no. 19, pp. 18470–18478, 2011. 61. G. K. M. Hasanuzzaman, M. Selim Habib, S. M. Abdur Razzak, M. A. Hossain and Y. Namihira, "Low Loss Single-Mode Porous-Core Kagome Photonic Crystal Fiber for THz Wave Guidance," Journal of Lightwave Technology, vol. 33, no. 19, pp. 4027-4031, 1 Oct.1, 2015 62. Md. Shariful Islam, Mohammad Faisal, and S. M. Abdur Razzak, "Extremely low loss porous-core photonic crystal fiber with ultra-flat dispersion in terahertz regime," J. Opt. Soc. Am. B 34, 1747-1754 (2017). en_US
dc.identifier.uri http://hdl.handle.net/123456789/651
dc.description Supervised by Prof Dr. Md. Rakibul Islam Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Boardbazar, Gazipur-1704 en_US
dc.description.abstract Terahertz radiation occupies a middle ground between microwaves and infrared light waves known as the terahertz gap, where technology for its generation and manipulation is in its infancy. The frequency band of 0.1-10 THz, known as THz band has brought potential applications in many important fields. For wave propagation THz systems use free space as medium. But in free space waves face many difficulties which is very big issue for wave propagation. So we have to use guided transmission instead of unguided transmission. In the meantime many guided transmission line has many kinds of deprivation such as effective material loss, confinement loss, bending loss, dispersion loss, power fraction issue etc. So we had decided to make a hollow core porous core fiber which has less losses than other PCF. Mainly we have been inspired from previous papers in which these losses was too much high for THz wave guidance. Then we have designed a novel hollow core photonic crystal fiber (PCF) which consists of symmetrical hexagonal rings in its cladding distributed in three rows. The prime objective of this work is to increase the sensitivity but other significant features like effective material loss, confinement loss, effective area, numerical aperture and dispersion have been thoroughly investigated over a wide bandwidth using the finite element method-based commercially available software, COMSOL version 5.3. Numerical simulation shows that, a maximum chemical sensitivity of 99.39%, 99.76% and 99.44% can be obtained for methanol, benzene and water respectively at optimum operating conditions. The symmetry in design makes the proposed structure easily feasible to be fabricated using the existing fabrication technologies. Thus it is believed that the proposed PCF has the potential to uplift the standard of photonic crystal fiber sensors and open a new window in this field of research. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology, Board Bazar, Gazipur, Bangladesh en_US
dc.title Photonic Crystal Fiber Based Optical Fiber Core Design For Sensing and Transmission in Terahertz Spectrum en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics