dc.identifier.citation |
[1] D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4 (2010) 83–91. [2] D. O. Melville, R. J. Blaikie, and C. Wolf, "Super-resolution imaging through a planar silver layer," Opt. Express, vol. 13,no. 6,pp. 2127-2134,2005. [3] J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartai, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nature communications, vol. 1,p. 143,2010. [4] C. Jung, S. Yee, K. Kuhn, Integrated optics waveguide modulator based on surface plasmon resonance, J. Light. Technol. 12 (1994) 1802–1806. [5] T. Nikolajsen, K. Leosson, S.I. Bozhevolnyi, Surface plasmon polariton based modulators and switches operating at telecom wavelengths, Appl. Phys. Lett. 85 (2004) 5833–5835. [6] A. Hosseini, Y. Massoud, A low-loss metal–insulator–metal plasmonic Bragg reflector, Opt. Express 14 (2006) 11318–11323. [7] Y. Shen, T. Lo, P. Taday, B. Cole, W. Tribe, M. Kemp, Detection and identification of explosives using terahertz pulsed spectroscopic imaging, Appl. Phys. Lett. 86 (2005) 241116. [8] M. Nagel, M. Forst, H. Kurz, “THz biosensing devices: fundamentals and technology”, J. Phys. Condens. Matter 18 (2006) S601. [9] M. G. Saber, R. H. Sagor, "Design and analysis of a gallium lanthanum sulfide based nanoplasmonic coupler yielding 67% efficiency," vol. 125, no. 18, pp. 5374-5377, 2014. [10] Lou, Fei, et al. "Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides." Applied Physics Letters 100.24 (2012): 241105. [11] K. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," Antennas and Propagation, IEEE Transactions on, vol. 14, pp. 302-307, 1966. [12] Gururaj V. Naik, Jongbum Kim, and Alexandra Boltasseva, "Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]," Opt. Mater. Express 1, 1090- 1099 (2011) [13] M. E. Aryaee Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, "Highly doped InP as a low loss plasmonic material for mid-IR region," Opt. Express 24, 29077-29088 (2016) [14] A. Taflove and S. C. Hagness, "Computational Electrodynamics: The Finite-Difference Time- Domain Method (Artech House, Boston, 2000)," pp. 273-328, 2001. [15] R. H. Sagor, K. A. Shahriar, M. G. Saber, M. M. A. Joy, and I. H. Sohel, "Modeling of Dispersive Materials Using Dispersion Models for FDTD Application," vol. 8, no. 2, pp. 251-275, 2016. [16] A. V. Deinega, I. V. Konistyapina, M. V. Bogdanova, I. A. Valuev, Yu. E. Lozovik, and B. V. Potapkin, "Optimization of an anti-reflective layer of solar panels based on ab initio calculations," vol. 52, no. 11, pp. 1128-1134, 2009. [17] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," vol. 37, no. 22, pp. 5271-5283, 1998 |
en_US |