dc.identifier.citation |
[1] uPiaggesi, Simone, et al. ”Predicting City Poverty Using Satellite Imagery.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019. [2] uHall, G. Brent, Neil W. Malcolm, and Joseph M. Piwowar. ”Integration of remote sensing and GIS to detect pockets of urban poverty: The case of Rosario, Argentina.” Transactions in GIS 5.3 (2001): 235-253. [3] uPerez, Anthony, et al. ”Poverty prediction with public landsat 7 satellite imagery and machine learning.” arXiv preprint arXiv:1711.03654 (2017). [4] Xie, Michael, et al. ”Transfer learning from deep features for remote sensing and poverty mapping.” Thirtieth AAAI Conference on Artificial Intelligence. 2016. [5] Abelson, B.; Varshney, K.; and Sun, J. 2014. Targeting direct cash transfers to the extremely poor. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 1563–1572. ACM . [6] Chatfield, K.; Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2014. Return of the devil in the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531 [7] Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; and Darrell, T. 2013. DeCAF: A deep convolutional activation feature for generic visual recognition. CoRR abs/1310.1531. [8] Independent Expert Advisory Group Secretariat. 2014. A world that counts: Mobilising the data revolution for sustainable development. Technical report. 28 [9] Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R. B.; Guadarrama, S.; and Darrell, T. 2014. Caffe: Convolutional architecture for fast feature embedding. CoRR abs/1408.5093 . [10] Dupuis, Kate, and M. Kathleen Pichora-Fuller. ”Recognition of emotional speech for younger and older talkers: Behavioural findings from the Toronto Emotional Speech Set.” Canadian Acoustics 39.3 (2011): 182-183. [11] Le, Q. V.; Ranzato, M.; Monga, R.; Devin, M.; Chen, K.; Corrado, G. S.; Dean, J.; and Ng, A. Y. 2012. Building high-level features using large scale unsupervised learning. In International Conference on Machine Learning . [12] Long, J.; Shelhamer, E.; and Darrell, T. 2014. Fully convolutional networks for semantic segmentation. CoRR abs/1411.4038. [13] Mnih, V., and Hinton, G. E. 2010. Learning to detect roads in high-resolution aerial images. In Computer Vision–ECCV 2010. Springer. 210–223. [14] Mnih, V., and Hinton, G. E. 2012. Learning to label aerial images from noisy data. In Proceedings of the 29th International Conference on Machine Learning (ICML-12), 567– 574. [15] Murthy, K.; Shearn, M.; Smiley, B. D.; Chau, A. H.; Levine, J.; and Robinson, D. 2014. Skysat-1: very high-resolution imagery from a small satellite. In SPIE Remote Sensing, 92411E–92411E. International Society for Optics and Photonics. [16] Oquab, M.; Bottou, L.; Laptev, I.; and Sivic, J. 2014. Learning and transferring mid-level image representations using convolutional neural networks. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’14, 1717–1724. Washington, DC, USA: IEEE Computer Society . 29 [17] Pan, S. J., and Yang, Q. 2010. A survey on transfer learning. Knowledge and Data Engineering, IEEE Transactions on 22(10):1345–1359. [18] Razavian, A. S.; Azizpour, H.; Sullivan, J.; and Carlsson, S. 2014. CNN features off-the-shelf: an astounding baseline for recognition. CoRR abs/1403.6382. [19] Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A. C.; and Fei-Fei, L. 2014. ImageNet large scale visual recognition challenge. International Journal of Computer Vision 1–42 . [20] Varshney, K. R.; Chen, G. H.; Abelson, B.; Nowocin, K.; Sakhrani, V.; Xu, L.; and Spatocco, B. L. 2015. Targeting villages for rural development using satellite image analysis. Big Data 3(1):41–53. [21] Wolf, R., and Platt, J. C. 1994. Postal address block location using a convolutional locator network. In Advances inNeural Information Processing Systems, 745–752. Morgan Kaufmann Publishers. [22] World Resources Institute. 2009. Mapping a better future: How spatial analysis can benefit wetlands and reduce poverty in Uganda. [23] Xie, M.; Jean, N.; Burke, M.; Lobell, D.; and Ermon, S. 2015. Transfer learning from deep features for remote sensing and poverty mapping. CoRR abs/1510.00098. [24] Zhou, B.; Lapedriza, A.; Xiao, J.; Torralba, A.; and Oliva, A. 2014. Learning deep features for scene recognition using Places database. In Advances in Neural Information Processing Systems, 487–495. [25] Beger, Andreas; Cassy L Dorff Michael D Ward (2014) Ensemble forecasting of irregular leadership change. Research Politics 1(3) (http://rap.sagepub.com/content/ 1/3/2053168014557511). 30 [26] Cederman, Lars-Erik; Nils B Weidmann Nils-Christian Bormann (2015) Triangulating horizontal inequality: Toward improved conflict analysis. Journal of Peace Research 52(6): 806–821. [27] Center for International Earth Science Information Network (CIESIN) Centro Internacional de Agricultura Tropical (CIAT) (2005) Gridded population of the world v3 (GPWv3). Palisades, NY: CIESIN, Columbia University (http://sedac.ciesin.columbia.edu/gpw/). [28] Chen, Xi William D Nordhaus (2011) Using luminosity data as a proxy for economic statistics. Proceedings of the National Academy of Sciences 108(21): 8589–8594. [29] Doll, Christopher (2008) CIESIN Thematic Guide to NightTime Light Remote Sensing and its Applications. Center for International Earth Science Information Network . [30] Elvidge, Christopher D; Kimberley E Baugh, Eric A Kihn, Herbert WKroehl, Ethan R Davis ChrisWDavis (1997) Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. International Journal of Remote Sensing 18(6): 1373–1379. [31] Hegre, H°avard Nicholas Sambanis (2006) Sensitivity analysis of empirical results on civil war onset. Journal of Conflict Resolution 50(4): 508–535. [32] Henderson, Vernon; Adam Storeygard David N Weil (2011) A bright idea for measuring economic growth. American Economic Review 101(3): 194–199. [33] Hodler, Roland Paul A Raschky (2014) Regional favoritism. Quarterly Journal of Economics 129(2): 995–1033. 31 [34] Jerven, Morten (2013) Poor Numbers: How We Are Misled by African Development Statistics and What To Do About It. Ithaca, NY: Cornell University Press. [35] Kuhn, Patrick Nils B Weidmann (2015) Unequal we fight: Between- and within-group inequality and ethnic civil war. Political Science Research and Methods 3(3): 543–568. [36] Kyba, Christopher CM; Stefanie Garz, HelgaKuechly, Alejandro Sa nchez de Miguel, Jaime Zamorano, Ju rgen Fischer Franz Ho lker (2014) High-resolution imagery of earth at night: New sources, opportunities and challenges. Remote Sensing 7(1): 1–23. [37] Mellander, Charlotta; Kevin Stolarick, Zara Matheson Jose Lobo (2013) Night-time light data: A good proxy measure for economic activity? CESIS Electronic Working Paper Series number 315. Royal Institute of Technology (https://static.sys.kth.se/itm/wp/cesis/cesiswp315.pdf). [38] Michalopoulos, Stelios Elias Papaioannou (2013) Pre-colonial ethnic institutions and contemporary African development. Econometrica 81(1): 113–152. [39] Min, Brian; Kwawu Mensan Gaba, Ousmane Fall Sarr Alsassane Agalassou (2013) Detection of rural electrification in Africa using DMSP-OLS night lights imagery. International Journal of Remote Sensing 34(22): 8118–8141. [40] National Geophysical Data Center (2014a) DMSP-OLS nighttime lights time series, version 4 (http://ngdc.noaa. gov/eog/dmsp/- downloadV4composites.html). [41] https://www.google.com/search?q=convolutional+picturessource 32 |
en_US |