dc.identifier.citation |
1. A. Karakoti, P. Tripathy, V. R. Kar, K. Jayakrishnan, M. Rajesh, and M. Manikandan, 1 – Finite element modeling of natural fiber-based hybrid composites. Elsevier, 2019. 2. O. Faruk, A. K. Bledzki, H. Fink, and M. Sain, “Progress Report on Natural Fiber Reinforced Composites,” pp. 1–18, 2013. 3. A. I. Al-mosawi, “Cite my papers6 Natural Fiber as a substitute to Synthetic Fiber in Polymer Composites : A Review,” no. August, 2015. 4. L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, “A Review on Natural Fiber Reinforced Polymer Composite and Its Applications,” vol. 2015, 2015. 5. V. Mittal, “Natural-Fiber-Reinforced Epoxy and USP Resin Composites,” pp. 127–156, 2016. 6. S. Biswas and A. Satapathy, “A comparative study on erosion characteristics of red mud filled bamboo – epoxy and glass – epoxy composites,” Mater. Des., vol. 31, no. 4, pp. 1752–1767, 2010. 7. D. Cristina et al., “Composites : Part A Studies on the characterization of piassava fibers and their epoxy composites,” Compos. PART A, vol. 43, no. 3, pp. 353–362, 2012. 8. V. Mishra and S. Biswas, “Physical and Mechanical Properties of Bi-directional Jute Fiber epoxy Composites,” Procedia Eng., vol. 51, no. NUiCONE 2012, pp. 561–566, 2013. 9. A. Ali, A. B. Sanuddin, and S. Ezzeddin, “The effect of aging on Arenga pinnata fiberreinforced epoxy composite,” Mater. Des., vol. 31, no. 7, pp. 3550–3554, 2010. 10. V. Mittal, R. Saini, and S. Sinha, “Natural fi ber-mediated epoxy composites e A review,” Compos. Part B, vol. 99, pp. 425–435, 2016. 45 11. [V. M. Karbhari and L. Zhao, “Use of composites for 21st century civil infrastructure,” vol. 185, pp. 433–454, 2000. 12. A. Ticoalu, T. Aravinthan, and F. Cardona, “A review of current development in natural fiber composites for structural and infrastructure applications,” no. November, pp. 1– 5, 2010. 13. C. Ã. Soutis, “Fibre reinforced composites in aircraft construction,” vol. 41, pp. 143– 151, 2005. 14. E. Cocchieri, R. Almeida, S. José, and S. Paulo, “A Review on the Development and Properties of Continuous Fiber / epoxy / aluminum Hybrid Composites for Aircraft Structures 2 . The Production of Metal / laminate Hybrid Composites,” vol. 9, no. 3, pp. 247–256, 2006. 15. H. Cheung, M. Ho, K. Lau, F. Cardona, and D. Hui, “Composites : Part B Natural fibrereinforced composites for bioengineering and environmental engineering applications,” Compos. Part B, vol. 40, no. 7, pp. 655–663, 2009. 16. S. J. I. N. Park, K. Y. Lee, W. A. N. S. Ha, and S. O. O. Y. Park, “Structural Changes and Their Effect on Mechanical Properties of Silk Fibroin / Chitosan Blends,” no. March, pp. 2571–2575, 1999. 17. J. Black, “Orthopaedic Biomaterials in Research and Practice IMPORTANT ANNOUNCEMENT FOR Jo celebrate,” vol. 10, p. 1989, 1989. 18. M. Schulte, M. Schultheiss, E. Hartwig, S. Wolf, and R. Sokiranski, “Vertebral body replacement with a bioglass-polyurethane composite in spine metastases – clinical , radiological and biomechanical results,” pp. 437–444, 2000. 19. S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong, “Biomedical applications of polymer-composite materials : a review,” vol. 61, 2001. 46 20. F. P. La Mantia and M. Morreale, “Composites : Part A Green composites : A brief review,” Compos. Part A, vol. 42, no. 6, pp. 579–588, 2011. 21. S. V Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, “Are natural fiber composites environmentally superior to glass fiber reinforced composites ?,” vol. 35, pp. 371–376, 2004. 22. A. Ashori, “Wood – plastic composites as promising green-composites for automotive industries !,” vol. 99, pp. 4661–4667, 2008. 23. F. M. Al-oqla and S. M. Sapuan, “Natural fi ber reinforced polymer composites in industrial applications : feasibility of date palm fi bers for sustainable automotive industry,” J. Clean. Prod., vol. 66, pp. 347–354, 2014. 24. J. Holbery and D. Houston, “Natural-Fiber-Reinforced Polymer Composites in Automotive Applications,” no. November, 2006. 25. M. R. Sanjay, G. R. Arpitha, L. L. Naik, K. Gopalakrisha, and B. Yogesha, “Applications of Natural Fibers and Its Composites : An Overview,” 2016. 26. N. Graupner, A. S. Herrmann, and J. Müssig, “Composites : Part A Natural and manmade cellulose fibre-reinforced poly ( lactic acid ) ( PLA ) composites : An overview about mechanical characteristics and application areas,” Compos. Part A, vol. 40, no. 6–7, pp. 810–821, 2009. 27. H. Singh, J. Inder, P. Singh, S. Singh, V. Dhawan, and S. K. Tiwari, “ScienceDirect,” Mater. Today Proc., vol. 5, no. 14, pp. 28427–28437, 2018. 28. M. A. Fuqua, S. Huo, and C. A. Ulven, “Natural Fiber Reinforced Composites,” vol. 3724, no. October, 2016. 29. T. Hojo, Z. Xu, Y. Yang, and H. Hamada, “Tensile Properties of Bamboo , Jute and Kenaf Mat-Reinforced Composite,” Energy Procedia, vol. 56, pp. 72–79, 2014. 47 30. S. D. Pandita, X. Yuan, and M. A. Manan, “Evaluation of jute / glass hybrid composite sandwich : Water resistance , impact properties and life cycle assessment,” no. December, 2013. 31. Muller, D. H. and Krobjilowski, A. (2003). New Discovery in the Properties of Composite Reinforced with Natural Fibers, Journal of Industrial Textiles, 33: 111130 32. Joshi, S. V., Drza, L. T., Mohanty, A. K. and Arora, S. (2004). Are Natural Fibers Composites Environmentally Superior to Glass Fiber Reinforced Composites, Composites Part A, 35: 371376. 33. Umair, S. (2006). Environmental Effect of Fiber Composite Materials-Study of Life Cycle Assessment of Materials Used for Ship Structure, MS Thesis Dissertation, Royal Institute of Technology, Stockholm 34. Bilba, K., Arsene, M.-A. and Quesanga, A. (2007). Study of Banana and Coconut Fibers: Botanical Composition, Thermal Degradation and Textural Observation, Journal of Bioresource Technology, 98:5868. 35. Sgriccia, N., Hawley, M. C. and Mishra, M. (2008). Characterization of Natural Fibers Surfaces and Natural Fiber Composites, Composites: Part A, 39: 16321637. 36. F. Jin, X. Li, and S. Park, “Journal of Industrial and Engineering Chemistry Synthesis and application of epoxy resins : A review,” J. Ind. Eng. Chem., vol. 29, pp. 1–11, 2015. 37. S. H. Han, H. J. Oh, H. C. Lee, and S. S. Kim, “The effect of post-processing of banana fibers on the mechanical properties of epoxy-based composites,” Compos. Part B Eng., vol. 45, no. 1, pp. 172–177, Feb. 2013. 38. I. Choi and D. G. Lee, “Composites : Part A Surface modification of banana fiber / epoxy composites with randomly oriented aramid fiber felt for adhesion strength enhancement,” Compos. Part A, vol. 48, pp. 1–8, 2013. 39. A. Ly, H. Hy, and A. Dy, “Hot curing epoxy system based on,” no. February, 1998. 48 40. R. Grande, P. Alegre, R. Grande, and P. Alegre, “Influence of the Stacking Sequence on the Mechanical Properties of Glass / Sisal,” vol. 29, no. 2, 2010. 41. B. Birecikli, O. A. Karaman, S. B. Celebi, and A. Turgut, “The influence of composite laminate stacking sequence on failure load of bonding joints using,” vol. 3, no. December, pp. 1–10, 2018. 42. S. A. Hitchen and R. M. J. Kemp, “The effect of stacking sequence on impact damage in a banana fibre / epoxy composite,” vol. 26, no. 3, pp. 207–214, 1995. 43. I. Subagia, Y. Kim, L. Tijing, … C. K.-C. P. B., and undefined 2014, “Effect of stacking sequence on the flexural properties of hybrid composites reinforced with banana and basalt fibers,” Elsevier. 44. K. S. Ahmed and S. Vijayarangan, “Tensile , flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites,” vol. 7, pp. 330– 335, 2008. 45. U. June, “What is resin infusion ( or vacuum infusion )?,” no. June, 2012. 46. Venkateshwaran, N. and Elayaperumal, A. (2010). Banana Fiber Reinforced Polymer Composites - A Review. Journal of Reinforced Plastics and Composites, 29(15), pp.2387-2396. 47. Venkateshwaran, N. and Elayaperumal, A. (2010). Banana Fiber Reinforced Polymer Composites - A Review. Journal of Reinforced Plastics and Composites, 29(15), pp.2387-2396. 48. Lai, J.Botsis, J.Cugnoni and D.Coric, “An experimental numerical study of moisture absorption in an epoxy composite,” Composites Part A: Applied Science and Manufacturing, vol 43, no 7, pp 1053-1060, 2012 49 49. C.Mizera, D.Herak, P.Hrabe, and A.Kabutey, “Effect of temperature and moisture content on tensile behavior of false banana fiber(Ensete Ventricosum,” International Agrophysics, vol 31, no 3, pp. 377-82,2017 50. 47. Z. Li, X. Wang, L. Wang, Properties of hemp fiber reinforced concrete composites. Composites: Part A; 2006; 37: 497-505. 51. 48. Wang H. Design and optimization of chemical and mechanical processing of hemp for rotor spinning and textile applications, PhD Thesis. University of New South Wales; 2002. 52. Wang HM, Postle R, Kessler RW, Kessler W, Adaptive processing of Australia hemp for short fiber spinning. Bast fibrous plants on the turn of second and third millennium, Shenyang,China; 2001. 53. G. Lebrun , A. Couture, L. Laperrière, Tensile and impregnation behavior of unidirectional hemp/paper/epoxy and flax/paper/epoxy composites Laboratoire de Mécanique et Éco-Matériaux (LMEM), Université du Québec à Trois-Rivières (UQTR), C.P. 500, Trois-Rivières, Québec, Canada 54. S. Banerjee, B.V. Sankar, Mechanical properties of hybrid composites using finite element method based micromechanics, Composites: Part B;2014; 58: 318–327. 55. Chamis CC, Lark RF, Hybrid composites- State-of-the-art review: Analysis, design, application and fabrication. In: 18th Structures, structural dynamics and materials conference. 1977; 311–331. 56. Fu Shao-Yun, Hybrid effects on tensile properties of hybrid short-glass fiber-and shortbanana- fiber-reinforced polypropylene composites, Journal of Material Science;2001;36(5):1243–1251. 57. Sonparote PW, Lakkad SC, Mechanical properties of banana/glass fiber reinforced hybrids. Fiber Science and Technology;1982;16(4):309–312. 50 58. Venkateshwaran N, Elayaperumal A, Sathiya GK, Prediction of tensile properties of hybrid-natural fiber composites. Composites: Part B; 2012;43(2):793–796 59. M. Ramesh, K. Palanikumar, K. Hemachandra Reddy, Comparative evaluation on properties of hybrid glass fiber- sisal/jute reinforced epoxy composites, Procedia Engineering; 2013;51:745 – 750. 60. M. Ramesh, K. Palanikumar, K. Hemachandra Reddy, Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites, Composites: Part B;2013; 48:1–9. 61. S.M. Sapuan, A. Leenie, M. Harimi, Y.K. Beng, Mechanical properties of woven banana fiber reinforced epoxy composites, Materials and Design; 2006;27: 689–693. 62. Zainudin E.S., Sapuan S.M., Abdan K., Mohamad M.T.M., Thermal degradation of banana pseudo-stem filled unplasticized polyvinyl chloride (UPVC) composites, Materials and Design; 2009; 30 : 557–562. 63. Samal S.K., Mohanty S., Nayak S.K., Banana/Glass Fiber-Reinforced Polypropylene Hybrid, Composites: Fabrication and Performance. Evaluation, Polymer-Plastics Technology and Engineering; 2009; 48(4): 397-414. DOI: 10.1080/03602550902725407. 64. Kumar S., Varma I.K., Degradation Studies of Polycaprolactone in Banana Fibers Reinforced Thermoplastics Composites, Journal of Macromolecular Science, Part B: Physics; 2006; 45(1): 153-164. 65. Kumar S., Misra R. K., Analysis of Banana Fibers Reinforced Low density Polyethylene/Poly(Є caprolactone) Composites, Soft Materials; 4(1): 1-13. DOI: 10.1080/15394450600823040. 66. Shaktawat V., Pothan L.A., Saxena N.S., Sharma K, Sharma T.P., Temperature Dependence of Thermo-Mechanical Properties of Banana Fiber-Reinforced Polyester 51 Composites, Advanced Composite Materials; 2008; 17(1): 89-99. DOI: 10.1163/156855108X295672. 67. Zaman H.U., Khan M.A., Khan R.A., Physico-Mechanical and Degradation Properties of Banana Fiber/LDPE Composites: Effect of Acrylic Monomer and Starch, Composite Interfaces; 2011; 18(8): 685-700. DOI: 10.1163/156855412X626261. 68. H. Jiang, D. Pascal Kamdem, B. Bezubic and P. Ruede, "Mechanical properties of poly (vinyl chloride)/wood flour/glass fiber hybrid composites", Journal of Vinyl and Additive Technology, vol. 9, no. 3, pp. 138-145, 2003. Available: 10.1002/vnl.10075. 69. Kitano, T.; Haghani, E.; Tanegashima, T.; Saha, P. Polym Compos 2000, 21, 493. 70. Rozman, H. D.; Tay, G. S.; Kumar, R. N.; Abusamah, A.; Ismail, H.; Ishak, Z. A. M. Eur Polym J 2001, 37, 1283. 71. 16. Rozman, H. D.; Tay, G. S.; Kumar, R. N.; Abusamah, A.; Ismail, 72. H.; Ishak, Z. A. M. Polym Plast Technol Eng 2001, 40, 103. 73. 17. Arbelaiz, A.; Fernandez, B.; Cantero, G.; Llano-Ponte, R.; Valea, A.; Mondragon, Compos A 2005, 36, 1637. 74. 18. Thwe, M. M.; Liao, K. J Mater Sci 2003, 38, 363. 75. 19. Thwe, M. M.; Liao, K. Compos Sci Technol 2003, 63, 375. 76. Aseer J.R., Sankaranarayanasamy K., Jayabalan P., Natarajan R., Priya Dasan K., Morphological, Physical, and Thermal Properties of Chemically Treated Banana Fiber, Journal of Natural Fibers; 2013; 10(4): 365-380. DOI:10.1080/15440478.2013.824848. 77. A. Stocchi, B. Lauke, A. Vázquez, and C. Bernal, Compos. Part A-Appl. S., 38, 1337 (2007). 78. L. A. Pothan, P. Potschke, R. Habler, and S. Thomas, J. Compos. Mater., 39, 1007 (2005) 52 79. H. N. Dhakal, Z. Y. Zhang, M. O. W. Richardson, and O. A. Z. Errajhi, Compos. Struct., 81, 559 (2007). 80. M. Zampaloni, F. Pourboghrat, S. A. Yankovich, B. N. Rodgers, J. Moore, L. T. Drzal, A. K. Mohanty, and M. Misra, Compos. Part A-Appl. S., 38, 1569 (2007) 81. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003). 82. S. Shibata, Y. Cao, and I. Fukumoto, Polym. Test., 25, 142 (2006). 83. S. W. Kim, S. Oh, and K. Lee, Radiat. Phys. Chem., 76, 1711 (2007). 84. 13. Paiva Junior, C. Z., de Carvalho, L. H., Fonesca, V. M., Monteiro, S. N. and d’Almeida, J. R. M. (2004). Analysis of the Tensile Strength of Polyester/hybrid Ramie- Cotton Fabric Composites, Polymer Testing, 23: 131–135. 85. Jacob, M., Thomas, S. and Varughese, K. T. (2004). Natural Rubber Composites Reinforced with Sisal/oil Palm Hybrid Fibers: Tensile and Cure Characteristics, J. Appl. Polym. Sci., 93(5): 2305–2312. 86. Jacob, M., Thomas, S. and Varughese, K. T. (2004). Mechanical Properties of Sisal/oil Palm Hybrid Fiber Reinforced Natural Rubber Composites, Compos. Sci. Tech. 64(7– 8): 955–965 87. Pavithran, C., Mukherjee, P. S., Brahmakumar, M. and Damodaran, A. D. (1991). Impact Properties of Sisal-glass Hybrid Laminates, J. Mater. Sci., 26: 455–459. 88. Bledzki, A. K. and Gassan, J. (1999). Composites Reinforced with Cellulose Based Fibers, Prog. Polym. Sci., 24: 221–274. 89. Ismail, H., Shuhelmy, S. and Edyham, M. (2002). The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fiber filled natural rubber composites. European Polymer Journal, 38(1), pp.39-47. 53 90. Ismail, H., Edyham, M. and Wirjosentono, B. (2002). Bamboo fiber filled natural rubber composites: the effects of filler loading and bonding agent. Polymer Testing, 21(2), pp.139-144. 91. Thwe MM, Liao K. Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Composites Part A 2002;33: 43–52. 92. Okubo K, Fujii T, Yamamoto Y. Development of bamboo-based polymer composites and their mechanical properties. Composites Part A 2004;35:377–83. 93. Thwe MM, Liao K. Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Composites Part A 2002;33: 43–52. 94. Davoodi MM, Sapuan SM, Ahmad D, Ali A, Khalina A, Jonoobi M. Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 2010;31:4927–32. 95. Rassiah K, Ahmad MMHM. A review on mechanical properties of bamboo fiber reinforced polymer composite. Aust J Basic Appl Sci 2013;7:247–53 96. Nunna S, Chandra PR, Shrivastava S, Jalan A. A review on mechanical behavior of natural fiber based hybrid composites. J Reinf Plast Compos 2012;31:759–69. 97. Athijayamani A, Thiruchitrambalam M, Manikandan V, et al. Mechanical properties of natural fiber reinforced polyester hybrid composites. Int J Plast Technol 2010;14:104– 16. 98. Kumar NM, Reddy GV, Naidu SV, Rani TS, Subha MCS. Mechanical properties of coir/glass fiber phenolic resin based composites. J Reinf Plast Compos 2009;28:2605– 13. 54 99. Kalia S, Kaith B, Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 2009. 100. Adekunle K, Cho S-W, Patzelt C, Blomfeldt T, Skrifvars M. Impact and flexural properties of flax fabrics and Lyocell fiber-reinforced bio-based thermoset. J Reinf Plast Compos 2011;30:685–97. 101. Alawar A, Hamed AM, Al-Kaabi K. Characterization of treated date palm tree fiber as composite reinforcement. Compos Part B Eng 2009;40:601–6. 102. Zhu J, Zhu H, Njuguna J, Abhyankar H. Recent development of flax fibers and their reinforced composites based on different polymeric matrices. Materials (Basel) 2013;6:5171–98. 103. Anuar H, Zuraida A. Improvement in mechanical properties of reinforced thermoplastic elastomer composite with kenaf bast fiber. Compos Part B Eng 2011;42:462–5 104. Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H. Kenaf reinforced biodegradable composite. Compos Sci Technol 2003;63:1281–6. 105. Azwa ZN, Yousif BF. Characteristics of kenaf fiber/epoxy composites subjected to thermal degradation. Polym Degrad Stab 2013;98:2752–9. 106. Wang Jinhua, Ramaswamy GN. One-step processing and bleaching of mechanically separated kenaf fibers: effects on physical and chemical properties. Text Res J 2003;73:339–44. 107. Pujari, S. (2010). Comparison of Jute and Banana Fiber Composites: A Review. International Journal of Current Engineering and Technology, 2(2), pp.121-126. 108. Pujari, S. (2010). Comparison of Jute and Banana Fiber Composites: A Review. International Journal of Current Engineering and Technology, 2(2), pp.121-126. 55 109. Pothan, L., Thomas, S. and Neelakantan, N. (1997). Short Banana Fiber Reinforced Polyester Composites: Mechanical, Failure and Aging Characteristics. Journal of Reinforced Plastics and Composites, 16(8), pp.744-765. |
en_US |