Voltage Conversion Techniques: Design and Analysis of High Gain Hybrid DC-DC Converter Using SC-SL Combined Structures

Show simple item record

dc.contributor.author Arfin, Md Sultanul
dc.contributor.author Al Mamun, Abdullah
dc.contributor.author Mahmood, Sharif Nafis
dc.contributor.author Chowdhury, Tanzil
dc.date.accessioned 2020-12-18T09:39:26Z
dc.date.available 2020-12-18T09:39:26Z
dc.date.issued 2019-11-15
dc.identifier.citation 1. F.L. Luo, H. Ye, “Advanced DC/DC Converters”, CRC Press, Boca Raton, Florida, USA, 2004. 2. M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman. "Step-up DC– DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications." IEEE Transactions on Power Electronics 32, no. 12 (2017): 9143-9178 3. G. Palumbo and D. Pappalardo, “Charge pump circuits: An overview on design strategies and topologies,” IEEE Circuits Syst. Mag., vol. 10, no. 1, pp. 31–45, First Quarter 2010. 4. M. S. Makowski and D. Maksimovic, “Performance limits of switched capacitor DC-DC converters,” in Proc. IEEE 26th Annu. Power Electron. Spec. Conf., 1995, pp. 1215– 1221. 5. F. L. Luo, “Switched-capacitorized DC/DC converters,” in Proc. IEEE 6th Int. Power Electron. Motion Control Conf., 2009, pp. 1074–1079. 6. M. D. Seeman, “A design methodology for switched-capacitor DC-DC converters,” Univ.California, Berkeley, Berkeley, CA, USA, Tech. Rep.. UCB/EECS-2009-78, May 2009. 7. J. A. Starzyk, J. Ying-Wei, and F. Qiu, “A DC-DC charge pump design based on voltage doublers,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48, no. 3, pp. 350– 359, Mar. 2001. 8. M. D. Seeman and S.R. Sanders, “Analysis and optimization of switched capacitor DCDC converters,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 841–851, Mar. 2008. 9. Y. Lei and R. C. N. Pilawa-Podgurski, “A general method for analyzing resonant and soft-charging operation of switched-capacitor converters,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5650–5664, Oct. 2015. 10. E. H. Ismail, M. A. Al-Saffar, A. J. Sabzali, andA.A. Fardoun, “A family of single-switch PWM converters with high step-up conversion ratio,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 4, pp. 1159–1171, May 2008. 11. B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switchedcapacitor/ switched-inductor structures for getting transformerless hybrid DC-DC PWM converters,” IEEE Trans. Circuits Syst I, Reg. Papers, vol. 55, no. 2, pp. 687–696, Mar. 2008. 12. M. Prudente, L. L. Pfitscher, and R. Gules, “A boost converter with voltage multiplier cells,” in Proc. IEEE Power Electron. Spec. Conf., 2005, pp. 2716– 103 13. A. A. Fardoun and E. H. Ismail, “Ultra step-up DC-DC converter with reduced switch stress,” IEEE Trans. Ind. Appl., vol. 46, no. 6, pp. 2025–2034, Sep./Oct. 2010. 14. B. Axelrod, Y. Berkovich, and A. Ioinovici, “Transformerless DC-DC converters with a very high DC line-to-load voltage ratio,” in Proc. Int. Symp. Circuits Syst., 2003, vol. 3, pp. III-435–III-438. 15. Y. P. Siwakoti, F. Blaabjerg, P. C. Loh, and G. E. Town, “High-voltage boost quasi-Zsource isolated DC/DC converter,” IET Power Electron., vol. 7, no. 9, pp. 2387–2395, 2014. 16. W. Li, D. Xu, B. Wu, Y. Zhao, H. Yang, and X. He, “Zero-voltage switching dual-boost converter with multi-functional inductors and improved symmetrical rectifier for distributed generation systems,” IET Power Electron., vol. 5, no. 7, pp. 969–977, 2012. 17. Y. Zhao, X. Xiang, C. Li, Y. Gu, W. Li, and X. He, “Single-phase high step-up converter with improved multiplier cell suitable for half-bridge based PV inverter system,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2807–2816, Jun. 2014. 18. S. Lee, P. Kim, and S. Choi, “High step-up soft-switched converters using voltage multiplier cells,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3379–3387, Jul. 2013. 19. J.W. Baek,M. H. Ryoo, T. J. Kim, D.W. Yoo, and J. S. Kim, “High boost converter using voltage multiplier,” in Proc. 31st Annu. Conf. IEEE Ind. Electron. Soc., 2005, pp. 567– 572. 20. K. B. Park, G. W. Moon, and M. J. Youn, “High step-up boost converter integrated with a transformer-assisted auxiliary circuit employing quasi-resonant operation,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1974–1984, Apr. 2012. 21. M. Forouzesh and A. Baghramian, “Galvanically isolated high gain Y source DC–DC converters for dispersed power generation,” IET Power Electron., vol. 9, no. 6, pp. 1192– 1203, May 18, 2016 22. W. J. Lee, C. E. Kim, G. W. Moon, and S. K. Han, “A new phase-shifted full-bridge converter with voltage-doubler-type rectifier for high efficiency PDP sustaining power module,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2450–2458, Jun. 2008 23. M. Nymand and M. A. E. Andersen, “High-efficiency isolated boost DCDC converter for high-power low-voltage fuel-cell applications,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 505–514, Feb. 2010. 104 24. Y. Hu,W. Xiao,W. Li, and X. He, “Three-phase interleaved high-step-up converter with coupled-inductor-based voltage quadrupler,” IET Power Electron., vol. 7, no. 7, pp. 1841– 1849, 2014 25. Y. Zhao, X. Xiang, W. Li, X. He, and C. Xia, “Advanced symmetrical voltage quadrupler rectifiers for high step-up and high output-voltage converters,” IEEE Trans. Ind. Electron., vol. 28, no. 4, pp. 1622–1631, Apr. 2013 26. H. Wu, T. Xian, Y. Xing, P. Xu, H. Hu, and Z. Zhang, “Secondary side phase-shiftcontrolled high step-up hybrid resonant converter with voltage multiplier for high efficiency PV applications,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2015, pp. 1428– 1434. 27. Y. Jiao, F. L. Luo, and M. Zhu, “Voltage-lift-type switched-inductor cells for enhancing DC-DC boost ability: principles and integrations in Luo converter,” IET Power Electron., vol. 4, no. 1, pp. 131–142, 2011. 28. M.K.Kazimierczuk, Pulse-Width Modulated DC-DC Power Converters. Chichester, U.K.: Wiley, 2008. 29. R.W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA, USA: Kluwer, 2001. 30. Y. Lu, H. Liu, H. Hu, H. Wu, and Y. Xing, “Single-switch high step-up converter with coupled-inductor and built-in transformer,” in Proc. IEEE 10th Conf. Ind. Electron. Appl., 2015, pp. 1181–1186. 31. K. B. Park, G. W. Moon, and M. J. Youn, “Non-isolated high step-up stacked converter based on boost-integrated isolated converter,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 577–587, Feb. 2011. 32. H. L. Do, “A soft-switching DC/DC converter with high voltage gain,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1193–1200, May 2010. 33. K. B. Park, G. W. Moon, and M. J. Youn, “High step-up boost converter integrated with a transformer-assisted auxiliary circuit employing quasi-resonant operation,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 1974–1984, Apr. 2012. 34. N. Vazquez, L. Estrada, C. Hernandez, and E. Rodriguez, “The tapped inductor boost converter,” in Proc. IEEE Int. Symp. Ind. Electron., 2007, pp. 538–543. 35. K.W. E. Cheng, “Tapped inductor for switched-mode power converters,” in Proc. 2nd Int. Conf. Power Electron. Syst. Appl., 2006, pp. 14–20 105 36. Z. H. Shi, K. W. E. Cheng, and S. L. Ho, “Static performance and parasitic analysis of tapped-inductor converters,” IET Power Electron., vol. 7, no. 2, pp. 366–375, 2014. 37. J. I. Kang, J. Han, and S. K. Han, “Lossless snubber for tapped-inductor boost converter for high step-up application,” in Proc. IEEE Int. Conf. Ind. Technol., 2014, pp. 253–260. 38. Y. Gu, D. Zhang, and Z. Zhao, “Input current ripple cancellation technique for boost converter using tapped inductor,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5323– 5333, Oct. 2014. 39. Q. Zhao and F. C. Lee, “High-efficiency, high step-up DC-DC converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65–73, Jan. 2003. 40. S. Poshtkouhi, A. Biswas and O. Trescases, “DC-DC converter for high granularity, substring MPPT in photovoltaic applications using a virtual parallel connection,” in Proc. IEEE 27th Annu. Appl. Power Electron. Conf. Expo., 2012, pp. 86–92. 41. T. S. Wu and T. H. Yu, “Unified approach to developing single-stage power converters,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 1, pp. 211–223, Jan. 1998 42. J. Leyva-Ramos, M. G. Ortiz-Lopez, L. H. Diaz-Saldierna, and J. A. Morales-Saldana, “Switching regulator using a quadratic boost converter for wide DC conversion ratios,” IET Power Electron., vol. 2, no. 5, pp. 605–613, 2009. 43. P. W. Lee, Y. S. Lee, D. K. W. Cheng, and X. C. Liu, “Steady-state analysis of an interleaved boost converter with coupled inductors,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 787–795, Aug. 2000. 44. F. Zhang, F. Z. Peng, and Z. Qian, “Study of the multilevel converters in DC-DC applications,” in Proc. IEEE 35th Annu. Power Electron. Spec. Conf., 2004, pp. 1702– 1706. 45. S.Kouro et al., “Recent advances and industrial applications of multilevel converters, IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553–2580, Aug. 2010. 46. F. Z. Peng, W. Qian, and D. Cao, “Recent advances in multilevel converter/ inverter topologies and applications,” in Proc. Int. Power Electron. Conf., 2010, pp. 492–501. 47. W. Li, W. Li, Y. Deng, and X. He, “Single-stage single-phase high-step up ZVT boost converter for fuel-cell microgrid system,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3057–3065, Dec. 2010. 48. J. C. Rosas-Caro, J.C.Mayo-Maldonado, R. Salas-Cabrera, A.Gonzalez- Rodriguez, E. N. Salas-Cabrera, and R. Castillo-Ibarra, “A family of DC-DC multiplier converters,” Eng. Lett., vol. 19, pp. 57–67, 2011. 106 49. X. Zhang and T. C. Green, “The modular multilevel converter for high step-up ratio DCDC conversion,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4925–4936, Aug. 2015. 50. J. C. Rosas-Caro, J. M. Ramirez, F. Z. Peng, and A. Valderrabano, “A DC-DC multilevel boost converter,” IET Power Electron., vol. 3, no. 1, pp. 129–137, 2010. 51. G. R. Walker and P. C. Sernia, “Cascaded DC-DC converter connection of photovoltaic modules,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 1130–1139, Jul. 2004. 52. A. I. Bratcu, I. Munteanu, S. Bacha, D. Picault, and B. Raison, “Cascaded DC-DC converter photovoltaic systems: Power optimization issues,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 403–411, Feb. 2011. 53. D. Y. Kim, J. K. Kim, and G. W. Moon, “A three-level converter with reduced filter size using two transformers and flying capacitors,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 46–53, Jan. 2013. 54. L. S. Yang, T. J. Liang, and J. F. Chen, “Transformerless DC-DC converters with high step-up voltage gain,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144–3152, Aug. 2009. 55. Y. Tang, D. Fu, T. Wang, and Z. Xu, “Hybrid switched-inductor converters for high stepup conversion,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp. 1480–1490, Mar. 2015. 56. Y. Berkovich and B. Axelrod, “Switched-coupled inductor cell for DCDC converters with very large conversion ratio,” IET Power Electron., vol. 4, no. 3, pp. 309–315, 2011. 57. B. Axelrod and Y. Berkovich, “New coupled-inductor SEPIC converter with very high conversion ratio and reduced voltage stress on the switches,” in Proc. IEEE 33rd Int. Telecommun. Energy Conf., 2011, pp. 1–7. 58. B. Axelrod, Y. Berkovich, S. Tapuchi, and A. Ioinovici, “Steep conversion ratios of Ćuk, Zeta and Sepic converters based on a switched coupled-inductor cell,” in Proc. IEEE Power Electron. Spec. Conf., 2008, pp. 3009-3014. 59. Intel Technology Symposium, Tech. Rep, Intel Corporation, Hillsboro, OR, 2001. 60. J. Wei, P. Xu, H. Wu, F. C. Jee, K. Yao, and M. Ye, “Comparison of three topology candidates for 12 V VRM,” in Proc. IEEE Appl. Power Electron. Conf. (APEC), 2001, pp. 245–251. 61. L. Huber and M. M. Jovanovic´, “A design approach for server power supplies for networking,” in Proc. IEEE Appl. Power Electron. Conf. (APEC), 2000, vol. 2, pp. 1163– 1169. 107 62. A. Ioinovici, “Switched-capacitor power electronics circuits,” IEEE Circuits Syst. Mag., vol. 1, no. 1, pp. 37–42, Jan. 2001. 63. D. Maksimovic´ and S. C´ uk, “Switching converters with wide dc conversion range,” IEEE Trans. Power Electron., vol. 6, pp. 149–157, Jan. 1991. 64. V. Paceco, A. Nascimento, V. Farias, J. Viera, and L. Freitas, “A quadratic buck converter with lossless commutation,” IEEE Trans. Ind. Electron., vol. 47, pp. 264–271, Apr. 2001. 65. K. Kuwabara, E. Miyachika, and M. Kohsaka, “New switching regulators derived from switched-capacitor dc–dc converters,” IEICE, Tokyo, Japan, Tech. Report IEICE, PE88- 5, 1988, pp. 31–37. en_US
dc.identifier.uri http://hdl.handle.net/123456789/725
dc.description Supervised by Dr. Golam Sarowar Associate Professor, Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT) Board Bazar, Gazipur- 1704 en_US
dc.description.abstract DC-DC Converter plays an important role in power electronic systems for renewable energy applications. Numerous literatures have been dedicated to improving the voltage gain of DC-DC power converters that employs various voltage boosting techniques such as using voltage multiplier cell, switched capacitor (SC), switched inductor (SL) and magnetic coupling to name a few. The objective of this work is to present and analyze two new hybrid structure that is a simultaneous combination of SC and SL structures working together to provide superior gain compared to any existing voltage up and down structure alone. The proposed structure for step up voltage conversion is applied to Zeta converter to produce a hybrid high step up Zeta converter and the proposed structure for step down voltage conversion is applied to a Ćuk converter which resulted in a hybrid high step down Ćuk converter. Both of the designed converter circuits were able to provide a theoretical and simulated voltage gain ratio up to 35 times using only one active switch and without exceeding the pulse-width modulation (PWM) duty cycle ratio of 0.9 for step up conversion and without going below 0.1 for step down conversion. Working principles of the proposed converters were described in detail and their steady state analysis in continuous conduction mode (CCM) was done to derive expressions for voltage gain, current flow through individual components, voltage and current stress on the switch and diodes. Efficiency analysis was made to derive expressions for power loss in diodes, capacitors, inductors and switch which in turn provided the total power loss and conversion efficiency of the proposed converter circuits. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology,Board Bazar, Gazipur, Bangladesh en_US
dc.title Voltage Conversion Techniques: Design and Analysis of High Gain Hybrid DC-DC Converter Using SC-SL Combined Structures en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics