Hexagonally clustered Photonic Crystal Fiber based SPR sensor design

Show simple item record

dc.contributor.author Jamil, Md. Abu
dc.contributor.author Siraz-Uz-Zaman, Md.
dc.contributor.author Pulak, Mahfuz Kabir
dc.contributor.author Ahsan, Syed Asir Hamim
dc.date.accessioned 2020-12-21T09:56:48Z
dc.date.available 2020-12-21T09:56:48Z
dc.date.issued 2019-11-15
dc.identifier.citation 1. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express, vol. 14, no. 21, pp. 9944–9954, 2006 2. K. Nielsen, H.K. Rasmussen, A.J. Adam, P.C. Planken, O. Bang, P.U. Jepsen, Bendable, “lowloss Topas fibers for the terahertz frequency range”, Opt. Exp. 17(10) (2009) 8592–8601 3. L. G. Carrascosa, ‘‘Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation,’’ Chem. Commun., vol. 50, no. 27, pp. 3585– 3588, 2014 4. M. S. Islam, J. Sultana, K. Ahmed, M. R. Islam, A. Dinovitser, B.W.-H.Ng, and D. Abbott, ‘‘A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,’’ IEEE Sensors J., vol. 18, no. 2, pp. 575–582, Jan. 2018 5. M. S. Islam, J. Sultana, A. A. Rifat, A. Dinovitser, B. W.-H. Ng, and D. Abbott, ‘‘Terahertz sensing in a hollow core photonic crystal fiber,’’ IEEE Sensors J., vol. 18, no. 10, pp. 4073–4080, May 2018 6. J. N. Dash and R. Jha, ‘‘Highly sensitive side-polished birefringent PCF based SPR sensor in near IR,’’ Plasmonics, vol. 11, no. 6, pp. 1505–1509, 2016 7. J. N. Dash and R. Das, ‘‘SPR based magnetic-field sensing in microchannelled PCF: A numerical approach,’’ J. Opt., vol. 20, no. 11, 2018, Art. no. 115001 67 8. J. N. Dash, R. Das, and R. Jha, ‘‘AZO coated microchannel incorporated PCF-based SPR sensor: A numerical analysis,’’ IEEE Photon. Technol. Lett., vol. 30, no. 11, pp. 1032–1035, Jun. 1, 2018 9. J. N. Dash and R. Jha, ‘‘On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance,’’ Plasmonics, vol. 10, no. 5, pp. 1123–1131, 2015 10. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, ‘‘Thinned fiber Bragg gratings as refractive index sensors,’’ IEEE Sensors J., vol. 5, no. 6, pp. 1288–1295, Dec. 2005 11. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, ‘‘High sensitivity evanescent field fiber Bragg grating sensor,’’ IEEE Photon. Technol. Lett., vol. 17, no. 6, pp. 1253–1255, Jun. 2005. 12. J. H. Osório, R. Oliveira, S. Aristilde, G. Chesini, M. A. R. Franco, R. N. Nogueira, and C. M. B. Cordeiro, ‘‘Bragg gratings in surface-core fibers: Refractive index and directional curvature sensing,’’ Opt. Fiber Technol., vol. 34, pp. 86–90, Mar. 2017 13. H. J. Patrick, A. D. Kersey, and F. Bucholtz, ‘‘Analysis of the response of long period fiber gratings to external index of refraction,’’ J. Lightw. Technol., vol. 16, no. 9, pp. 1606–1612, Sep. 1998 14. J. Zhou, Y. Wang, C. Liao, B. Sun, J. He, G. Yin, S. Liu, Z. Li, G. Wang, X.Zhong,andJ.Zhao,‘‘Intensitymodulatedrefractiveindexsensorbased on optical fiber Michelson interferometer,’’ Sens. Actuators B, Chem., vol. 208, pp. 315–319, Mar. 2015 15. Y. Zeng, R. Hu, L. Wang, D. Gu, J. He, S.-Y. Wu, H.-P. Ho, X. Li, J. Qu, B. Z. Gao, and Y. Shao, ‘‘Recent advances in surface plasmon resonance imaging: Detection speed, sensitivity, and portability,’’ Nanophotonics, vol. 6, no. 5, pp. 1017–1030, 2017 16. G. A. Lopez, M.-C. Estevez, M. Soler, and L. M. Lechuga, ‘‘Recent advances in nanoplasmonic biosensors: Applications and lab-on-a-chip integration,’’ Nanophotonics, vol. 6, no. 1, pp. 123–136, 2016 68 17. J. Jiang, X. Wang, S. Li, F. Ding, N. Li, S. Meng, R. Li, J. Qi, Q. Liu, and G. L. Liu, ‘‘Plasmonic nano-arrays for ultrasensitive bio-sensing,’’ Nanophotonics, vol. 7, no. 9, pp. 1517–1531, 2018 18. Y.-F. C. Chau, C.-K. Wang, L. Shen, C. M. Lim, H.-P. Chiang, C.-T. C. Chao, H. J. Huang, C.- T. Lin, N. T. R. N. Kumara, and N. Y. Voo, ‘‘Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays,’’ Sci. Rep., vol. 7, no. 1, p. 16817, 2017 19. J. N. Dash and R. Jha, ‘‘Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,’’ IEEE Photon. Technol. Lett., vol. 26, no. 11, pp. 1092–1095, Jun. 1, 2014 20. M. S. Islam, J. Sultana, A. A. Rifat, R. Ahmed, A. Dinovitser, B.W.-H.Ng, H. EbendorffHeidepriem, and D. Abbott, ‘‘Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum,’’ Opt. Express, vol. 26, no. 23, pp. 30347–30361, 2018 21. L.Peng, F.Shi, G.Zhou, S.Ge, Z. Houand C.Xia, “A surface Plasmon biosensor based on a Dshaped microstructured optical fiber with rectangular lattice” IEEE Photonics Journal 7(5), 1–9, (2015) 22. Y. Lu, X. Yang, M. Wang and J. Yao, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electronics Letters, vol. 51, no. 21, pp. 1675-1677, Oct. 2015 23. J.N. Dash and R. Jha, “Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance,” IEEE Photonics Technology Letters, vol. 26, no. 11, pp. 1092-1095, June 2014 24. C. Liu, L. Yang, X. Lu, Q. Liu, F. Wang, J. Lv, T. Sun, H. Mu, and P. K. Chu, “Mid-infrared surface plasmon Resonance sensor based on photonic crystal fibers,” Opt. Exp. 25(13), 14227–14237, (2017) 25. J. N. Dash and R. Jha, “Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance, ”IEEE Photonics Technol. Lett. 26(11), 1092–1095, (2014) 26. A. A. Rifat, F. haider, R. Ahmed, G. A. Mahdiraji, F. R. M. Adikan, and A. E. Miroshnichenko, “Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor, ” Opt. Lett. 43(4), 891–894, (2018) 69 27. T. Huang, “Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with Indium Tin Oxide at near-infrared wavelength,” Plasmonics 12(3), (2017) 28. A. A. Rifat, R. Ahmed, G. A. Mahdiraji and F. R. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sensors Journal 17(9), 2776–2783, (2017) 29. C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing, ” Opt. Exp. 26(7), 9039–9049, (2018) 30. M. R. Hasan, S. Akter, A. A. Rifat, S. Rana, K. Ahmed, R. Ahmed, H. Subbaraman, D. Abbott “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sensors Journal 18(1), 133–140, (2018) 31. M. Liu, X. Yang, P. Shum, and H. Yuan, “High-sensitivity birefringent and single-layer coating photonic crystal fiber biosensor based on surface plasmon resonance, ” Appl. Opt. 57(8), 1883– 1886, (2018) 32. Md. Saiful Islam,Jakeya Sultana, Rifat Ahmmed Aoni, “Dual-Polarized Highly Sensitive Plasmonic Sensor in the Visible to Near-IR Spectrum”, ‘Vol. 26, No. 23 | 12 Nov 2018 | OPTICS EXPRESS 30347’ en_US
dc.identifier.uri http://hdl.handle.net/123456789/730
dc.description Prof. Dr. Mohammad Rakibul Islam Supervisor Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT), Board-bazar, Gazipur-1704. en_US
dc.description.abstract 4 Abstract Photonic crystal fiber (PCF) based surface plasmon resonace (SPR) sensors are well known for distinguishing unknown analytes. These biosensors can identify certain scope of refractive indicess successfully. A hexagonal model with bunched air holes based surface plasmon resonance sensor is proposed in this paper. Gold and titanium di-oxide is utilized as the active plasmonic material. It is put on the outer surface of the PCF. For detection reason, the unknown analyte flow is situated at the external surface of the PCF. By utilizing the finite element method (FEM), sensing performance is examined. The proposed sensor illustrates greatest amplitude sensitivity of 4235 RIU - 1 and greatest wavelength sensitivity of 10000 nm/RIU at refractive index 1.40 for X-polarization. Maximum amplitude sensitivity of 4314 RIU - 1 and maximum wavelength sensitivity of 11000 nm/RIU were obtained for Y-polarization. This PCF based sensor can detect the refractive indices from 1.36 to 1.41. Moreover, performance of the sensor is examined by fluctuating the value of various parameters. These are gold thickness, titanium di-oxide thickness, pitch, analyte thickness and air hole diameter. The proposed sensor can identify biological analytes for its high sensitivity, improved sensing resolution and reasonable linearity. To our knowledge, this is the highest sensitivity for an SPR in published literature, and facilitates future development of sensors for accurate and precise analyte measurement en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology,Board Bazar, Gazipur, Bangladesh en_US
dc.title Hexagonally clustered Photonic Crystal Fiber based SPR sensor design en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics