| Login
dc.contributor.author | Ibrahim, Mainul Bin | |
dc.contributor.author | Syed, Zaheen E Muktadi | |
dc.contributor.author | Bakhtiar, Tahmid | |
dc.contributor.author | Arnab, S.M. Rhydh | |
dc.date.accessioned | 2020-12-25T09:59:09Z | |
dc.date.available | 2020-12-25T09:59:09Z | |
dc.date.issued | 2019-11-15 | |
dc.identifier.citation | [1] Mohammad T. Kawser, “LTE Air Interface Protocols”, Artech House, Boston, USA (2011). ISBN: 978-1-60807-201-9 [2] Alberto Rico-Alvariño, Madhavan Vajapeyam, Hao Xu, Xiaofeng Wang, Yufei Blankenship, Johan Bergman, Tuomas Tirronen, and Emre Yavuz,” An Overview of 3GPP Enhancements on Machine to Machine Communications”. [3] Kais Mekkia,∗, Eddy Bajica, Frederic Chaxela, Fernand Meyerb,” A comparative study of LPWAN technologies for large-scale IoT deployment”. [4] Sergio Martiradonna, Alessandro Grassi, Giuseppe Piro, Luigi Alfredo Grieco, and Gennaro Boggia,”An open source platform for exploring NB-IoT system performance”. [5] Benny Vejlgaard1, Mads Lauridsen1, Huan Nguyen1, Istv´an Z. Kov´acs2, Preben Mogensen1,2, Mads Sørensen, “Coverage and Capacity Analysis of Sigfox, LoRa, GPRS, and NB-IoT”. [6] MIN CHEN1,2, (Senior Member, IEEE), YIMING MIAO1, YIXUE HAO1, (Senior Member, IEEE), AND KAI HWANG3, (Life Fellow, IEEE),” Narrow Band Internet of Things”. [7] Luca Feltrin, Galini Tsoukaneri, Massimo Condoluci, Chiara Buratti, Toktam Mahmoodi, Mischa Dohler, and Roberto Verdone “Narrowband IoT: A Survey on Downlink and Uplink Perspectives”. [8] [9] J. Schlienz and D. Raddino, “Narrowband Internet ofThings,” White Paper, Aug. 2016. R. Ratasuk et al., “Overview of Narrowband IoT in LTE Rel-13,” 2016 IEEE Conf. Standards for Commun. and Networking, Oct. 2016, pp. 1–7. [9] [ N. Mangalvedhe, R. Ratasuk, and A. Ghosh, “NB-IoT Deployment Study for Low Power Wide Area Cellular IoT,” 2016 IEEE 27th Annual Int’l. Symp. Personal, Indoor, and Mobile Radio Commun., Sept 2016, pp. 1–6. [10]A. Adhikary, X. Lin, and Y. P. E. Wang, “Performance Evaluation of NB-IoT Coverage,” 2016 IEEE VTC-Fall, Sept 2016, pp. 1–5. [11]3GPP TS 23.682, “Architecture Enhancements to Facilitate Communications with Packet Data Networks and Applications,” 2017; https://portal.3gpp.org. [12] GSMA, “NB-IoT Deployment Guide to Basic Feature Set Requirements,” White Paper, Aug. 2017. [13]GSMA, “3GPP Low Power Wide Area Technologies,GSMA White Paper,” tech. rep., Oct. 2016. [14] 3GPP TS 37.868, “Study on RAN Improvements for Machinetype Communications,” 2017; https://portal.3gpp.org. [15]Y. D. Beyene et al., “On the Performance of Narrow-Band Internet of Things (NB-IoT),” 2017 IEEE Wireless Communication and Networking Conf., Mar. 2017, pp. 1–6. [16]Cellular networks for massive IoT-enabling low power wide area applications, white paper, 2016. Ericsson. [Online]. Available: {https://www.ericsson.com/res/docs/whitepapers/wp iot.pdf} 74 [17]Visual Network Index (VNI) Complete Forecast Highlights, 2016. Cisco. [Online]. Available:{http://www.cisco.com/c/dam/m/en us/solutions/service-provider/vni-forecast-highlights/pdf/Global 2020 Forecast Highlights.pdf} [18] J. Pet¨aj¨aj¨arvi, K. Mikhaylov, M. H¨am¨al¨ainen, and J. Iinatti, “Evaluation of LoRa LPWAN technology for remote health and wellbeing monitoring,”in 2016 10th International Symposium on Medical Information and Communication Technology (ISMICT), March 2016, pp. 1–5. [19] Sigfox. [Online]. Available: https://www.lora-alliance.org [20] T. Adame, A. Bel, B. Bellalta, J. Barcelo, and M. Oliver, “IEEE802.11AH: the WiFi approach for M2M communications,” IEEE Wireless Communications, vol. 21, no. 6, pp. 144–152, December 2014. New Work Item: NarrowBand IOT (NB-IOT). TSG RAN Meeting #69, 2015. 3GPP. [Online]. Available: {www.3gpp.org/FTP/tsg ran/TSGRAN/TSGR 69/Docs/RP-151621.zip} [21] New Study Item on Cellular System Support for Ultra Low Complexityand Low Throughput Internet of Things. TSG-GERAN Meeting #62,2015. 3GPP. [Online]. Available: {http://www.3gpp.org/ftp/tsg geran/TSG GERAN/GERAN 62 Valencia/Docs/GP-140421.zip}TS 36.211 Evolved Universal Terrestrial Radio Access (E-UTRA) physical channels and modulation (Release 13), 2016. 3GPP. [Online]. Available: {http://www.3gpp.org/ftp/specs/archive/23 series/23.060/23060-3c0.zip} [22]TS 36.213 Evolved Universal Terrestrial Radio Access (EUTRA); Physical layer procedures (Release 13), 2016. 3GPP.[Online]. Available: {http://www.3gpp.org/ftp//Specs/archive/36 series/36.213/36213-d20.zip}TS 36.321 Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification (Release 13), 2016. 3GPP. [Online]. Available: {http://www.3gpp.org/ftp//Specs/archive/36 series/36.321/36321-d20.zip} [23]Aalto University, “Researchers implemented a prototype for Narrowband Internet-of-Things system,” Press Release, 28 June 2016. [Online]. Available: {http://elec.aalto.fi/en/current/news/2016-06-28/} [24]Ettus research, August 2016. [Online]. Available: http://ettus.com [25] USRP X300 and X310 Spec Sheet, 2016. Ettus Research. [Online]. Available: {https://www.ettus.com/content/files/X300 X310Spec Sheet.pdf} [26]Z. Dawy et al., “Toward Massive Machine Type Cellular Communications,” IEEE Wireless Commun., vol. 24, no. 1, Feb. 2017, pp. 120–28. [27]M. R. Palattella et al., “Internet of Things in the 5G Era: Enablers, Architecture, and Business Models,” IEEE JSAC, vol. 34, no. 3, Mar. 2016, pp. 510–27. [28]H. Wang and A. O. Fapojuwo, “A Survey of Enabling Technologies of Low Power and Long Range Machine-to-Machine Communications,” IEEE Commun. Surveys & Tutorials, vol. 19, no. 4, 4th qtr. 2017, pp. 2621–39. [29]Y. P. E. Wang et al., “A Primer on 3GPP Narrowband Internet of Things,” IEEE Commun. Mag., vol. 55, no. 3, Mar.2017, pp. 117–23. [30]3GPP TS 36.321, “Evolved Universal Terrestrial Radio Access (E-UTRA) Medium Access Control (MAC) Protocol Specification,” 2017; https://portal.3gpp.org. 75 [31]3GPP TS 36.213, “Evolved Universal Terrestrial Radio Access (E-UTRA) Physical Layer Procedures,” 2017; https://portal. 3gpp.org. [32]3GPP TS 36.211, “Evolved Universal Terrestrial Radio Access (E-UTRA) Physical Channels and Modulation,” 2017; https://portal.3gpp.org. [33] 3GPP TS 36.331 “Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC) Protocol Specification,” 2017; https://portal.3gpp.org. [34] J. Schlienz and D. Raddino, “Narrowband Internet of Things,” White Paper, Aug. 2016. [35] R. Ratasuk et al., “Overview of Narrowband IoT in LTE Rel-13,” 2016 IEEE Conf. Standards for Commun. and Networking, Oct. 2016, pp. 1–7. [36]N. Mangalvedhe, R. Ratasuk, and A. Ghosh, “NB-IoT Deployment Study for Low Power Wide Area Cellular IoT,” 2016 IEEE 27th Annual Int’l. Symp. Personal, Indoor, and Mobile Radio Commun., Sept 2016, pp. 1–6. [37]A. Adhikary, X. Lin, and Y. P. E. Wang, “Performance Evaluation of NB-IoT Coverage,” 2016 IEEE VTC-Fall, Sept 2016, pp. 1–5. [38] 3GPP TS 23.682, “Architecture Enhancements to Facilitate Communications with Packet Data Networks and Applications,” 2017; https://portal.3gpp.org. [39]GSMA, “NB-IoT Deployment Guide to Basic Feature Set Requirements,” White Paper, Aug. 2017. [40]GSMA, “3GPP Low Power Wide Area Technologies, GSMA White Paper,” tech. rep., Oct. 2016. [41]Ericsson, “Ericsson Mobility Report,” tech. rep., Nov. 2016. [42]3GPP TS 37.868, “Study on RAN Improvements for Machinetype Communications,” 2017; https://portal.3gpp.org. [43] Y. D. Beyene et al., “On the Performance of Narrow-Band Internet of Things (NB-IoT),” 2017 IEEE Wireless Commun. and Networking Conf., Mar. 2017, pp. 1–6. [44]F. Boccardi et al., “Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, Feb. 2014, pp. 74–80. [45]ETSI GS LTN 003, “Low Throughput Networks (LTN); Protocols and Interfaces v. 1.1.1 (2014-09).” [46]3GPP TS 36.306, “E-UTRA, UE Radio Access Capabilities (Release 12, v.12.7.0),” 2015. [47] 3GPP TS 23.682, “Architecture Enhancements to Facilitate Communications with Packet Data Networks and Applications (Release 12, v.12.4.0),” 2015. [48]3GPP, “TR 36.888 Study on Provision of Low-Cost MTC UE Based on LTE, v. 12.0.0,” 2013. [49]R. Ratasuk, N. Mangalvedhe and A. Ghosh, “Extending LTE Coverage for Machine Type Communications,” Proc. IEEE 2nd World Forum on Internet of Things, Milan, Italy, 2015. [50] M. Kasparick et al., “Bi-Orthogonal Waveforms for 5G Random Access with Short Message Support,” Proc. 20th Euro. Wireless Conf., Barcelona,Spain, 2014. [51]W. Dai, M. Qiu, L. Qiu, L. Chen, and A. Wu, ``Who moved my data? Privacy protection in smartphones,'' IEEE Commun. Mag., vol. 54, no. 1, pp. 20_25, Jan. 2017. [52]M. Qiu and E. H.-M. Sha, ``Cost minimization while satisfying hard/soft timing constraints for heterogeneous embedded systems,'' ACM Trans .Design Autom. Electron. Syst., vol. 14, no. 2, pp. 1_30, 2009. 76 [53]M. Qiu, Z. Ming, J. Li, K. Gai, and Z. Zong, ``Phase-change memory optimizationfor green cloud with genetic algorithm,'' IEEE Trans. Comput.,vol. 64, no. 12, pp. 3528_3540, Dec. 2015. [54]Y. Li and M. Chen, ``Software-de_ned network function virtualization: A survey,'' IEEE Access, vol. 3, pp. 2542_2553, 2015. [55]X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, ``Vehicular fog computing: A viewpoint of vehicles as the infrastructures,'' IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 3860_3873, Jun. 2016. [56]F. Xu,Y. Li, H.Wang, P. Zhang, and D. Jin, ``Understanding mobile traf_c patterns of large scale cellular towers in urban environment,'' IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1147_1161, 2015. [57]Y. Li, F. Zheng, M. Chen, and D. Jin, ``A uni_ed control and optimization framework for dynamical service chaining in software-de_ned NFV system,'' IEEE Wireless Commun., vol. 22, no. 6, pp. 15_23, Dec. 2015. [58]F. Xu, Z. Tu, Y. Li, P. Zhang, X. Fu, and D. Jin, ``Trajectory recovery from ash: User privacy is not preserved in aggregated mobility data,'' in Proc. 26th Int. Conf. World Wide Web, 2017, pp. 1241_1250. [59]X. Ge, Z. Li, and S. Li, ``5G software de_ned vehicular networks,'' IEEE Commun. Mag., vol. 55, no. 7, pp. 87_93, Jul. 2017. [60]F. Xu, Y. Li, M. Chen, and S. Chen, ``Mobile cellular big data: Linking cyberspace and the physical world with social ecology,'' IEEE Netw., vol. 30, no. 3, pp. 6_12, Jun. 2016. [61]Cellular System Support for Ultra-Low Complexity and Low Throughput Cellular Internet of Things, document 3GPP TR 45.820, 2015. [62]E-UTRA Physical channels and modulation_Chap.10 Narrowband IoT, document 3GPP TS 36.211, 2016. [63]3GPP. (2016). Standardization of NB-IOT Completed. [Online]. Available: http://www.3gpp.org/news-events/3gpp-news/1785-nb_iot_ complete [64] (2016). Standards for the Iot. [Online]. Available: http://www.3gpp.org/news-events/3gpp-news/1805-iot_r14 [65]C. Hoymann et al., ``LTE release 14 outlook,'' IEEE Commun. Mag.,vol. 54, no. 6, pp. 44_49, Jun. 2016. [66]P. Reininger, ``3Gpp standards for the Internet-of-Things,'' Huawei, Shenzhen, China, Tech. Rep. 3GPP RAN WG 3, 2016. [67]X. Ge, S. Tu, G. Mao, C.-X. Wang, and T. Han, ``5G software de_ned vehicular networks,'' 5G Ultra-Dense Cellular Netw., vol. 23, no. 1,pp. 72_79, 2016. [68] ``5G wireless technology framework,'' IMT-Adv. Propulsion Group, China, Tech. Rep. IMT2020 (5G), 2015. [69] Standardization of Machine-Type Communications, document TR 23.888, 3GPP, 2014. [70]Feasibility Study on New Services and Markets Technology Enablers for Massive Internet of Things,, document TR 22.861, 3GPP, 2016. [71]Feasibility Study on New Services and Markets Technology Enablers_Critical Communications, document TR 22.862, 3GPP, 2016. [72]M. Chen,Y. Qian,Y. Hao,Y. Li, and J. Song, ``Data-driven computing and caching in 5G networks: Architecture and delay analysis,''IEEEWireless Commun., vol. 25, no. 1, 2018. [73]Huawei R & D Department, ``NB-IoT solution introduction,'' Huawei, Shenzhen, China, Tech. Rep., 2016. 77 [74]M. Science and T. People's Republic China. (2015). Circular on the Application of the National Science and Technology MajorProject of the new Generation Broadband Wireless MobileCommunication Network in 2016. [Online]. Available: http://www.most.gov.cn/tztg/201508/t20150803_120898.htm [75] (2017). Circular on the Application of the National Science andTechnology Major Project of the new Generation Broadband Wire-less Mobile Communication Network in 2017. [Online]. Available:http://www.miit.gov.cn/n1146290/n4388791/c5356011/content.html [76]China Datang Corp., ``NB-IoT and related cases of transitive networks,''World Mobile Congress, Shanghai, China, 2016. [77] A. Rico-Alvarino, M. Vajapeyam, H. Xu, and X. Wang, ``An overview of 3GPP enhancements on machine to machine communications,'' IEEE Commun. Mag., vol. 54, no. 6, pp. 14_21, Jun. 2016. [78]Ericsson, ``Cellular networks for massive IoT,'' Ericsson, Stockholm, Sweden, Tech. Rep., 2016. [79] RIoT, ``Low power networks hold the key to Internet of Things,'' Berlin,Germany, Tech. Rep., 2015. [80] D. Guo-Hua andY. Jun-Hua, ``Research on NB-IoT background, standard development, characteristics and the service,'' Mobile Commun., vol. 40, no. 7, pp. 31_36, 2016. [81]Z. Yulong, D. Xiaojin, andW. Quanquan, ``Key technologies and application prospect for NB-IoT,'' ZTE Technol., vol. 23, no. 1, pp. 43_46, 2017. [82] X. Ge et al., ``Energy-ef_ciency optimization for MIMO-OFDM mobile multimedia communication systems with QoS constraints,'' IEEE Trans. Veh. Technol., vol. 63, no. 5, pp. 2127_2138, May 2014. [83]Q. Xiaocong and M. Mingxin, ``NB-IoT standardization, technical characteristics and industrial development,'' Inf. Res., vol. 5, pp. 23_26, May 2016. [84]L. Wei, D. Jiangbo, and L. Na, ``NB-IoT key technology and designsimulation method,'' Telecommun. Sci., vol. S1, pp. 144_148, Jun. 2016. [85] J. J. Nielsen, D. M. Kim, G. C. Madueno, P. Popovski, and N. K. Pratas, ``A tractable model of the LTE access reservation procedure for machinetype communications,'' in Proc. IEEE Global Commun. Conf., Dec. 2015, pp. 1_6. [86] M. Islam, A.-E. Taha, and S. Akl, ``A survey of access management techniques in machine type communications,'' IEEE Commun. Mag., vol. 52, no. 4, pp. 74_81, Apr. 2014. [87]F. A. Tobagi, ``Distributions of packet delay and interdeparture time inslotted aloha and carrier sense multiple access,'' J. ACM, vol. 29, no. 4,pp. 907_927, 1982. [88] J.-B. Seo and V. C. M. Leung, ``Design and analysis of backoff algorithmsfor random access channels in UMTS-LTE and IEEE 802.16 systems,''IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3975_3989, Oct. 2011. [89] C.-H.Wei, R.-G. Cheng, and S.-L. Tsao, ``Performance analysis of grouppaging for machine-type communications in LTE networks,'' IEEE Trans. Veh. Technol., vol. 62, no. 7, pp. 3371_3382, Sep. 2013. [90]A. Laya, L. Alonso, and J. Alonso-Zarate, ``Is the random access channel of LTE and LTE-A suitable for M2M communications? A survey of alternatives,'' IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 4_16, Feb. 2014. 78 [91]M. E. Rivero-Angeles, D. Lara-Rodriguez, and F. A. Cruz-Perez, ``Access delay analysis of adaptive traf_c load_Type protocols for S-ALOHA and CSMA in EDGE,'' in Proc. IEEE Wireless Commun. Netw., vol. 3. Mar. 2003, pp. 1722_1727. [92]A. Mutairi, S. Roy, and G. Hwang, ``Delay analysis of OFDMA-aloha,''IEEE Trans. Wireless Commun., vol. 12, no. 1, pp. 89_99, Jan. 2013. [93]Y. Yang and T. S. P. Yum, ``Delay distributions of slotted ALOHAand CSMA,'' IEEE Trans. Commun., vol. 51, no. 11, pp. 1846_1857, Nov. 2003. [94]C. H. Wei, P. C. Lin, and R. G. Cheng, ``Comment on `An ef_cientrandom access scheme for OFDMA systems with implicit message transmission',''IEEE Trans. Wireless Commun., vol. 12, no. 1, pp. 414_415,Jan. 2013. [95]R. R. Tyagi, F. Aurzada, K.-D. Lee, and M. Reisslein, ``Connection establishmentin LTE-A networks: Justi_cation of poisson process modeling,''IEEE Syst. J., to be published, doi:10.1109/JSYST.2014.2387371. [96] P. Sergio, Study on MTC and Other Mobile Data Applications Communi-cations Enhancements, document TR 23.887, 3GPP, Sep. 2013. [97] Service Aspects and Service Principles, document G. T. 22.101, 2015. [98]R. G. Cheng, C. H. Wei, S. L. Tsao, and F. C. Ren, ``Rach collisionprobability for machine-type communications,'' in Proc. Veh. Technol. Conf., 2012, pp. 1_5. [99] J. Xin, Z. Xiaoping, T. Xiaoheng, T. Mi, and M. Lijuan, ``Improved multichannels-aloha transient performance analysis method and its application,''J. Electron. Inf., vol. 38, no. 8, pp. 1894_1900, 2016. [100] D. Raychaudhuri and J. Harman, ``Dynamic performance of ALOHA-type VSAT channels: A simulation study,'' IEEE Trans .Commun., vol. 38, no. 2, pp. 251_259, Feb. 1990. [101] Q. Ren and H. Kobayashi, ``Transient analysis of media access protocols by diffusion approximation,'' in Proc. IEEE Int. Symp. Inf. Theory, Sep. 1995, p. 107. [102] C. H. Wei, G. Bianchi, and R. G. Cheng, ``Modeling and analysis of random access channels with bursty arrivals in OFDMA wireless networks,''IEEE Trans.Wireless Commun., vol. 14, no. 4, pp. 1940_1953, Apr. 2015. [103] C. H. Wei, R. G. Cheng, and S. L. Tsao, ``Modeling and estimation of one-shot random access for _nite-user multichannel slotted ALOHA systems,'' IEEE Commun. Lett., vol. 16, no. 8, pp. 1196_1199, Aug. 2012. [104] B. Yang, G. Zhu, W. Wu, and Y. Gao, ``M2m access performance in LTE-a system,'' Trans. Emerg. Telecommun. Technol., vol. 25, no. 1, pp. 3_10, 2014. [105] G. C. Madueño, C. Stefanovi¢, and P. Popovski, ``Reengineering GSM/GPRS towards a dedicated network for massive smart metering,''in Proc. SmartGridComm, Nov. 2014, pp. 338_343. [106] M. Centenaro and L. Vangelista, ``A study on M2M traf_c and its impact on cellular networks,'' in Proc. Internet Things, 2015, pp. 154_159. [107] Ericsson, ``Downlink CCCH capacity evaluation for MTC,'' Stockholm, Sweden, Tech. Rep. G. GP-100893, 2010. [108] ZTE R & D Department, ``LTE MTC LTE simulations,'' ZTE, China, Tech. Rep. G. R2-104663, 2010. 79 [109] P. Osti, P. Lassila, S. Aalto, A. Larmo, and T. Tirronen, ``Analysis of PDCCH performance for M2M traf_c in LTE,'' IEEE Trans. Veh. Technol., vol. 63, no. 9, pp. 4357_4371, Nov. 2014. [110] G.-Y. Lin, S.-R. Chang, and H.-Y. Wei, ``Estimation and adaptation for bursty LTE random access,'' IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2560_2577, Apr. 2016. [111] J. Liu, J. Wan, B. Zeng, Q. Wang, H. Song, and M. Qiu, ``A scalable and quick-response software de_ned vehicular network assisted by mobile edge computing,'' IEEE Commun. Mag., vol. 55, no. 7, pp. 94_100, Jul. 2017. [112] L. Dai, ``Stability and delay analysis of buffered aloha networks,'' IEEE Trans. Wireless Commun., vol. 11, no. 8, pp. 2707_2719, Aug. 2012. [113] M. E. Rivero-Angeles, D. Lara-Rodriguez, and F. A. Cruz-Perez, ``Gaussian approximations for the probability mass function of the access delay for different backoff policies in S-ALOHA,'' IEEE Commun. Lett., vol. 10, no. 10, pp. 731_733, Oct. 2006. [114] M. Koseoglu, ``Lower bounds on the LTE-a average random access delay under massive m2m arrivals,'' IEEE Trans. Commun., vol. 64, no. 5, pp. 2104_2115, May 2016. [115] Z. Li, ``Research on low cost MTC indoor coverage enhancement technology,'' Ph.D. dissertation, School Commun. Eng., Chongqing Univ., Chongqing, China, 2014. [116] Q. Xintao, ``Research on coverage enhancement and resource allocation of M2M communication based on LTE-advanced,'' Ph.D. dissertation, School Commun. Eng., Beijing Jiaotong Univ., Beijing, China, 2015. [117] G. Naddafzadeh-Shirazi, L. Lampe, G. Vos, and S. Bennett, ``Coverage enhancement techniques for machine-to-machine communications over LTE,'' IEEE Commun. Mag., vol. 53, no. 7, pp. 192_200, Jul. 2015. [118] L. Bin, ``Discussion on Internet of Things coverage enhancement technology of NB-IoT,'' Mobile Commun., vol. 40, no. 19, pp. 55_59, 2016. [119] A. Goldsmith, Wireless Communications. Cambridge, U.K.: Cambridge Univ. Press, 2005, pp. 25_55. [120] Y. Fan, Z. Xiaoping, J. Xin, Z. Jihua, R. Dingliang, and G. Yiwen, ``An adaptive modulation algorithm for non data aided error vector magnitude in fast time-varying channels,'' J. Commun., vol. 38, no. 3, pp. 73_82, 2017. [121] X. Ge, J. Yang, H. Gharavi, and Y. Sun, ``Energy ef_ciency challenges of 5G small cell networks,'' IEEE Commun. Mag., vol. 55, no. 5, pp. 184_191, 2017. [122] Huawei R & D Department, ``Discussion on REL-13 NB-IoT evaluations,'' Huawei, Shenzhen, China, Tech. Rep. G. RP-161006, 2016. [123] S.-R. Yang and Y.-B. Lin, ``Modeling UMTS discontinuous reception mechanism,'' IEEE Trans. Wireless Commun., vol. 4, no. 1, pp. 312_319, Jan. 2005. [124] S. Jin and D. Qiao, ``Numerical analysis of the power saving in 3GPP LTE advanced wireless networks,'' IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1779_1785, Apr. 2012. [125] C.-C. Tseng, H.-C. Wang, F.-C. Kuo, K. C. Ting, H. H. Chen, and G. Y. Chen, ``Delay and power consumption in LTE/LTE-A DRX mechanism with mixed short and long cycles,'' IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1721_1734, Mar. 2016. 80 [126] H. Ramazanali and A. Vinel, ``Performance evaluation of LTE/LTE-A DRX: A Markovian approach,'' IEEE Internet Things J., vol. 3, no. 3, pp. 386_397, 2016. [127] A. T. Koc, S. C. Jha, R. Vannithamby, and M. Torlak, ``Device power saving and latency optimization in LTE-A networks through DRX con_guration,'' IEEE Trans. Wireless Commun., vol. 13, no. 5, pp. 2614_2625, May 2014. [128] K. Zhou, N. Nikaein, and T. Spyropoulos, ``LTE/LTE-A discontinuous reception modeling for machine type communications,'' IEEE Wireless Commun. Lett., vol. 2, no. 1, pp. 102_105, Feb. 2013. [129] T. Tirronen, A. Larmo, J. Sachs, B. Lindoff, and N. Wiberg, ``Machineto-machine communication with long-term evolution with reduced device energy consumption,'' Trans. Emerg. Telecommun. Technol., vol. 24, no. 4, pp. 413_426, 2013. [130] N. M. Balasubramanya, L. Lampe, G. Vos, and S. Bennett, ``DRX with quick sleeping: A novel mechanism for energy-ef_cient IoT using LTE/LTE-A,'' IEEE Internet Things J., vol. 3, no. 3, pp. 398_407, Mar. 2016. [131] A. Chockalingam and M. Zorzi, ``Energy ef_ciency of media access protocols for mobile data networks,'' IEEE Trans. Commun., vol. 46, no. 11, pp. 1418_1421, Nov. 1998. [132] Y. Yang and T. P. Yum, ``Analysis of power ramping schemes for UTRA-FDD random access channel,'' IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2688_2693, Nov. 2005. [133] G. Zhang, A. Li, K.Yang, L. Zhao, and D. Cheng, ``Optimal power control for delay-constraint machine type communications over cellular uplinks,'' IEEE Commun. Lett., vol. 20, no. 6, pp. 1168_1171, Jun. 2016. [134] H. S. Dhillon, H. C. Huang, H. Viswanathan, and R. A. Valenzuela, ``Power-ef_cient system design for cellular-based machine-to-machine communications,'' IEEE Trans. Wireless Commun., vol. 12, no. 11, pp. 5740_5753, Nov. 2013. [135] K. Lin, D. Wang, F. Xia, and H. Ge, ``Device clustering algorithm based on multimodal data correlation in cognitive Internet of Things,'' IEEE Internet Things J., to be published. [136] Huawei R & D Department, ``Modeling and experiential evaluation of vertical industry in IoT,'' Huawei, Shenzhen, China, Tech. Rep., 2016. [137] K. Lin, J. Song, J. Luo, W. Ji, M. S. Hossain, and A. Ghoneim, ``Green video transmission in the mobile cloud networks,'' IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 1, pp. 159_169, Jan. 2017. [138] F. Francois, O. H. Abdelrahman, and E. Gelenbe, ``Impact of signaling storms on energy consumption and latency of LTE user equipment,'' in Proc. IEEE Int. Conf. High Perform. Comput. Commun., Aug. 2015, pp. 1248_1255. [139] G. Gorbil, O. H. Abdelrahman, M. Pavloski, and E. Gelenbe, ``Modeling and analysis of RRC-based signalling storms in 3G networks,'' IEEE Trans. Emerg. Topics Comput., vol. 4, no. 1, pp. 113_127, Jan. 2016. [140] U. Phuyal, A. T. Koc, M.-H. Fong, and R. Vannithamby, ``Controlling access overload and signaling congestion in M2M networks,'' in Proc. Signals, Syst. Comput., 2013, pp. 591_595. [141] R. Cheng, A. Deng, and F. Meng, ``Study of NB-IoT planning objectivesand planning roles,'' China Mobile Group Design Inst. Co., Tech. Rep. Telecommun. Sci. (S1), 2016. 81 [142] W. Zhong, R. Yu, S. Xie, Y. Zhang, and D. Tsang, ``Software de_ned networking for _exible and green energy Internet,'' IEEE Commun. Mag., vol. 54, no. 12, pp. 68_75, Dec. 2016. [143] K.Wang, Y. Shao, L. Shu, C. Zhu, and Y. Zhang, ``Mobile big data faulttolerant processing for ehealth networks,'' IEEE Netw., vol. 30, no. 1, pp. 36_42, Jan. 2016. [144] Y. Zhang, R. Yu, S. Xie, W. Yao, Y. Xiao, and M. Guizani, ``Home M2M networks: Architectures, standards, and QoS improvement,'' IEEE Commun. Mag., vol. 49, no. 4, pp. 44_52, Apr. 2011. [145] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang, ``Multi-tier fog computing with large-scale IoT data analytics for smart cities,'' IEEE Internet Things J., to be published. [146] H. Lu, Y. Li, S. Mu, D.Wang, H. Kim, and S. Serikawa, ``Motor anomaly detection for unmanned aerial vehicles using reinforcement learning,'' IEEE Internet Things J., to be published. [147] M. Chen and K. Hwang, Cognitive Computing and Deep Learning for Intelligent Applications based on IoT/Cloud. Beijing, China:Machinery Ind. Press, 2017. [148] S. Zhixin and H. Hanshu, ``Security issues of NB-IoT,'' ZTE Technol., vol. 23, no. 1, pp. 47_50, 2017. [149] M. Chen, Introduction to Cognitive Computing. Wuhan, China: Huazhong Univ. Sci. Technol. Press, 2017. [150] K. Hwang and M. Chen, Big Data Analytics for Cloud/IoT and Cognitive Computing. London, U.K.: Wiley, 2017. | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/735 | |
dc.description | Supervised By: Dr. Mohammed T. Kawser Associate Professor, Department of Electrical and Electronic Engineering Islamic University of Technology | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Electrical and Electronic Engineering, Islamic University of Technology,Board Bazar, Gazipur, Bangladesh | en_US |
dc.title | Cognitive Radio based Carrier Adaptation to the Doppler Spread of NB-IoT using performance analysis | en_US |
dc.type | Thesis | en_US |