Theoretical Investigation of a Novel GaAs Based Air Slot Nano-Plasmonic Coupler

Show simple item record

dc.contributor.author Anwar, A.B.M Rafid
dc.contributor.author Sharif, Md. Omar
dc.contributor.author Mahmud, Shadman Shahriar
dc.date.accessioned 2020-12-26T05:02:35Z
dc.date.available 2020-12-26T05:02:35Z
dc.date.issued 2019-11-15
dc.identifier.citation 1. Ozbay, Ekmel. "Plasmonics: merging photonics and electronics at nanoscale dimensions." science 311.5758 (2006): 189-193. 2. Stockman, Mark I. "Nanofocusing of optical energy in tapered plasmonic waveguides." Physical review letters 93.13 (2004): 137404. 3. Pyayt, A. L., Wiley, B., Xia, Y., Chen, A., & Dalton, L. (2008). Integration of photonic and silver nanowire plasmonic waveguides. Nature nanotechnology, 3(11), 660. 4. Min, Changjun, and Georgios Veronis. "Absorption switches in metal-dielectric-metal plasmonic waveguides." Optics Express 17.13 (2009): 10757-10766. 5. Krasavin, Alexey V., and Anatoly V. Zayats. "Silicon-based plasmonic waveguides." Optics express 18.11 (2010): 11791-11799. 6. Sagor, Rakibul Hasan, Md Saiful Islam Sumon, and Mahir Tazwar. "Design and Analysis of a Novel Air Gap–Based Semi-elliptical Nanoplasmonic Coupler." Plasmonics (2019): 1-9. 7. Atwater, Harry A. "The promise of plasmonics." Sci. Am 296.4 (2007): 56-62. 8. Pillai, S. and, and M. A. Green. "Plasmonics for photovoltaic applications." Solar Energy Materials and Solar Cells 94.9 (2010): 1481-1486. 9. Kawata, Satoshi, Yasushi Inouye, and Prabhat Verma. "Plasmonics for near-field nano-imaging and superlensing." Nature photonics 3.7 (2009): 388. 10. Atwater, Harry A., and Albert Polman. "Plasmonics for improved photovoltaic devices." Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011. 1-11. 11. Gramotnev, Dmitri K., and Sergey I. Bozhevolnyi. "Plasmonics beyond the diffraction limit." Nature photonics 4.2 (2010): 83. 12. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method.Boston, MA, USA: Artech House, 2000 13. K. Xiao,J. P.David, andL.D.James,“A three-dimensional FDTD subgridding algorithm with separatedtemporal and spatial interfaces and related stability analysis,”IEEETrans. Antennas Propag., vol. 55, no. 07, pp. 1981–1990, Jul. 2007 14. G.Sunand,C.W.Trueman,“Approximate Crank-Nicolson schemes for the 2-D finite-difference time-domain method for waves,” IEEE Trans. Antennas Propag., vol. 52, no. 11, pp. 2963–2972, Nov.2004 15. J.-P. Berenger, “A perfectly matched layer for the absorption of electro- magnetic waves,” Journal of computational physics, vol. 114, no. 2, pp.185–200, 1994. 59 16. Z. Bi, K. Wu, C. Wu, and J. Litva, “A dispersive boundary condition for micro strip component analysis using the FD-TD method,”IEEE Trans. Microw. Theory Tech., vol. 40, pp. 774–777, Apr. 1992 17. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature photonics, vol. 4, no. 2, p. 83, 2010. 18. Ekmel Ozbay, Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions 19. Nanoplasmonic couplers and splitters Rami A. Wahsheh, Zhaolin Lu * and Mustafa A. G. Abushagur 20. Surface plasmon resonance in nanostructured metal films under the Kretschmann configuration. Leong et al, J. Applied Physics 106 (2009). 21. Hung-WenLinaWen-HwaHwubMing-DerGer Journal of Materials Processing Technology Volume 206, Issues 1–3, 12 September 2008, Pages 56-61 22. Md. Ghulam Saber, Rakibul Hasan Sagor,”Analysis of cuprous oxide-based ultra-compact nanoplasmonic coupler” 23. Rakibul Hasan Sagor, Md. Ashraful Hoque and Md. Ghulam Saber, “Performance Analysis of Gallium Lanthanum Sulfide and Cuprous Oxide as Nanoplasmonic Couplers” 24. Saiful Islam Sumon, Mahir Tazwar, Rakibul Hasan Sagor and Sakib Mahtab Khandaker “Design and Analysis of a Semi-Elliptical Ultra-Compact Nano-plasmonic Coupler” 25. R. A. Wahsheh and M. A. Abushagur, “Experimental and theoretical investigations of an air-slot coupler between dielectric and plasmonic waveguides, optics express, vol. 24, no. 8, pp. 8237–8242, 2016. 26. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Optics Express, vol. 15, no. 3, pp. 1211–1221,2007. 27. D. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Applied Physics Letters, vol. 89, no. 4, p. 041111, 2006 28. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ /4 impedance matching,” Optics express,vol. 15, no. 11, pp. 6762–6767, 2007. 29. Willets, Katherine A., and Richard P. Van Duyne. "Localized surface plasmon resonance spectroscopy and sensing." Annu. Rev. Phys. Chem. 58 (2007): 267-297. 30. Catchpole, KR and, and Albert Polman. "Plasmonic solar cells." Optics express 16.26 (2008): 21793-21800. 31. Steinberger, B., Hohenau, A., Ditlbacher, H., Stepanov, A.L., Drezet, A., Aussenegg, F.R., Leitner, A. and Krenn, J.R., 2006. Dielectric stripes on gold as surface plasmon waveguides. Applied Physics Letters, 88(9), p.094104. 60 32. Oulton, R. F., Bartal, G., Pile, D. F. P., & Zhang, X. (2008). Confinement and propagation characteristics of subwavelength plasmonic modes. New Journal of Physics, 10(10), 105018. 33. Ginzburg, Pavel, and Meir Orenstein. "Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching." Optics express 15.11 (2007): 6762-6767. 34. Martyniuk, P. & Antoszewski, J. & Martyniuk, M. & Faraone, L. & Rogalski, Antoni. (2014). New concepts in infrared photodetector designs. Applied Physics Reviews. 1. 041102. 10.1063/1.4896193. 35. Pozar, D.M., 2009. Microwave engineering. John Wiley & Sons. 36. Maier, Stefan Alexander. Plasmonics: fundamentals and applications. Springer Science & Business Media, 2007. en_US
dc.identifier.uri http://hdl.handle.net/123456789/738
dc.description Supervised by Dr. Rakibul Hasan Sagor Assistant Professor, Department of Electrical and Electronic Engineering, Islamic University of Technology. en_US
dc.description.abstract A novel rectangular nano-plasmonic coupler based on Gallium Arsenide (GaAs) has been suggested that has an air slot inserted into the dielectric waveguide, considering air as the dielectric material of the metal-dielectric-metal (MDM) plasmonic waveguide. The finite integral technique (FIT) based simulation software which was a commercial software named CST Microwave Studio yielded a coupling efficiency of 81.07% at the wavelength of optical communication i.e. 1.55μm. The most efficient coupling structure has been attained by analyzing the performance with a variety of different dimensions which subsequently results in decent performance over a wide range of wavelengths above the visible spectrum. The elementary flat rectangular composition of the suggested coupler without any tapered edges provides convenience in the manufacturing process, making the coupler affordable and peerless. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology,Board Bazar, Gazipur, Bangladesh en_US
dc.title Theoretical Investigation of a Novel GaAs Based Air Slot Nano-Plasmonic Coupler en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics