dc.identifier.citation |
[1] U. o. M. Gamage P.T .Faculty of Information technology, Identification of brain tumor using image segmentation techniques. [2] S. B. T. u. A.-B. Features, Mark Schmidt, Ilya Levner, Russell Greiner Department of Computing Science University of Alberta Edmonton, Albert Murtha, Aalo Bistritz Department of Oncology Cross Cancer Institute Edmonton AB, Canada. [3] Y. B. a. A. C. Ian Goodfellow, Deep Learning. [4] C. D. ,. M. ù. Ali IúÕna, Review of MRI-based Brain Tumor Image Segmentation Using Deep Learning Methods. [5] C. X. ,. J. L. P. D. o. E. a. C. E. T. J. H. U. B. M. 2. y. .. o. P. a. C. Dzung L. Phamy, "A SURVEY OF CURRENT METHODS IN MEDICAL IMAGE SEGMENTATION". [6] G. A. Woods, Digital Image Processing. [7] Y. W. J. C. Q. W. X. &. C. P. Xu, "Medical breast ultrasound image segmentation by machine learning .," ELSEVER.Ultrasound, (2019). [8] O. P. ,. B. T. Ronneberger, "U-Net: Convolutional Networks for Biomedical Image Segmentation," MICCAI, 2015. [9] Z. R. S. M. T. L. J. Zhou, "UNet++: A Nested U-Net architecture for Medical Image Segmentation .," 2018. [10] S. K. K. &. S. Al Arif, "SPNet: Shape Prediction Using a Fully Convolutional Neural Network," 2018. [11] F. N. N. &. A. S.-A. Milletari, "V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image segmentation," in Fourth International Conference on 3D Vision (3DV), 2016. [12] M. K. N. N.-E. E. S. S. S. W. K. &. N. K. Jafari, " Skin lesion segmentation in clinical images using deep learning," IEEE, 2016. [13] P. Kim, Matlab Deep Learning with Machine Learning , Neural Network & Artificial Intelligence By. 62 [14] G. E. David E. Rumelhart, "Learning representation by back popagation errors," Nature, 1986. [15] https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6, . [16] https://medium.com/datadriveninvestor/overview-of-different-optimizers-for-neural-networks-e0ed119440c3. [17] http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf. [Online]. [18] [Online]. Available: https://www.kaggle.com/suryanshdabas/skinlesionsegmentation. [19] Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance, 2017. [20] https://towardsdatascience.com/activation-functions-and-its-types-which-is-better-a9a5310cc8f. [21] J. B. P.Kingma, Adam: A method for Stochastic Optimization. [22] https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f. [23] D. E. Rumelhart, Learning representations by back-propagating errors. [24] P. F. a. T. B. Olaf Ronneberger, "U-Net: Convolutional Networks for Biomedical Image Segmentation.". [25] https://www.mathworks.com/help/images/boundary-tracing-in-images.html. [26] J. L. a. T. D. Evan Shelhamer, "Fully Convolutional Networksfor Semantic Segmentation," IEEE. [27] I. S. a. G. E. H. A. Krizhevsky, "Imagenet classification with deep convolutional neural networks," NIPS, 2012. [28] " https://computersciencewiki.org/index.php/Max-pooling/Pooling," [Online]. [29] C. C. J. &. M. J. Darken, "Learning rate schedules for faster stochastic gradient search. Neural Networks for Signal Processing," Proceedings of the 1992 IEEE Workshop(September), 1992. [30] D. G. L. G. A. S. J. Ciresan, "Deep neural networks segment neuronal membranes in electron microscopy images," NIPS, 2012. 63 [31] N. Qian, "On the momentum term in gradient descent learning algorithms. Neural Networks," The Official Journal of the International Neural Network Society, Vols. 12,, no. 1, 1999. |
en_US |