dc.identifier.citation |
[1] S. A. Maier, “Surface plasmon polaritons at metal/insulator interfaces”, in Plasmonics: Fundamentals and Applications, Springer, 2007, pp. 21–37. [2] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics”, nature, vol. 424, no. 6950, p. 824, 2003. [3] D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit”, Nature photonics, vol. 4, no. 2, p. 83, 2010. [4] S. A. Maier, “Plasmonics: The promise of highly integrated optical devices”, IEEE Journal of selected topics in Quantum Electronics, vol. 12, no. 6, pp. 1671– 1677, 2006. [5] M. L. Brongersma, R. Zia, and J. Schuller, “Plasmonics–the missing link between nanoelectronics and microphotonics”, Applied Physics A, vol. 89, no. 2, pp. 221–223, 2007. [6] M. Wang, M. Zhang, Y. Wang, R. Zhao, and S. Yan, “Fano resonance in an asymmetric mim waveguide structure and its application in a refractive index nanosensor”, Sensors, vol. 19, no. 4, p. 791, 2019. [7] X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive index sensor based on fano resonances in plasmonic waveguide with dual side-coupled ring resonators”, Photonic Sensors, vol. 8, no. 4, pp. 367–374, 2018. [8] M. R. Rakhshani and M. A. Mansouri-Birjandi, “High sensitivity plasmonic refractive index sensing and its application for human blood group identification”, Sensors and Actuators B: Chemical, vol. 249, pp. 168–176, 2017. [9] Y. Kong, R. Lin,W. Qian, Q.Wei, C. Liu, and S.Wang, “Active dual-wavelength optical switch-based plasmonic demultiplexer using metal-kerr nonlinear materialmetal waveguide”, IEEE Photonics Journal, vol. 9, no. 4, pp. 1–8, 2017. [10] M. Danaie and A. Shahzadi, “Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped si resonator”, Plasmonics, pp. 1–13, 2019. 81 [11] P. Sharma and D. K. Vishwakarma, “Long range multilayer hybrid plasmonic waveguide components and integrated circuit”, IEEE Transactions on Nanotechnology, vol. 18, pp. 940–947, 2019. [12] J. H. Zhu, Q. J. Wang, P. Shum, and X. G. Huang, “A nanoplasmonic high-pass wavelength filter based on a metal-insulator-metal circuitous waveguide”, IEEE transactions on nanotechnology, vol. 10, no. 6, pp. 1357–1361, 2011. [13] M. Z. U. Rahman, K. M. Krishna, K. K. Reddy, M. V. Babu, S. S. Mirza, and S. Y. Fathima, “Ultra-wide-band band-pass filters using plasmonic mim waveguide-based ring resonators”, IEEE Photonics Technology Letters, vol. 30, no. 19, pp. 1715–1718, 2018. [14] P. Sharma and V. D. Kumar, “All optical logic gates using hybrid metal insulator metal plasmonic waveguide”, IEEE Photonics Technology Letters, vol. 30, no. 10, pp. 959–962, 2018. [15] J. Shibayama, H. Kawai, J. Yamauchi, and H. Nakano, “Analysis of a 3d mim waveguide-based plasmonic demultiplexer using the trc-fdtd method”, Optics Communications, vol. 452, pp. 360–365, 2019. [16] Y.-Y. Xie, C. He, J.-C. Li, T.-T. Song, Z.-D. Zhang, and Q.-R. Mao, “Theoretical investigation of a plasmonic demultiplexer in mim waveguide crossing with multiple side-coupled hexagonal resonators”, IEEE Photonics Journal, vol. 8, no. 5, pp. 1–12, 2016. [17] M. B. Heydari, M. Asgari, and N. Jafari, “Novel analytical model for nanocoupler between metal–insulator–metal plasmonic and dielectric slab waveguides”, Optical and Quantum Electronics, vol. 50, no. 12, p. 432, 2018. [18] Y. Yu, J. Si, Y. Ning, M. Sun, and X. Deng, “Plasmonic wavelength splitter based on a metal–insulator–metal waveguide with a graded grating coupler”, Optics letters, vol. 42, no. 2, pp. 187–190, 2017. [19] S. Fathpour and B. Jalali, Silicon photonics for telecommunications and biomedicine. CRC Press, 2011. [20] Y. Kurokawa and H. T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties”, Physical Review B, vol. 75, no. 3, p. 035 411, 2007. [21] T. Cole, A. Kathman, S. Koszelak, and A. McPherson, “Determination of local refractive index for protein and virus crystals in solution by mach-zehnder interferometry”, Analytical biochemistry, vol. 231, no. 1, pp. 92–98, 1995. 82 [22] R. Zafar, S. Nawaz, G. Singh, A. d’Alessandro, and M. Salim, “Plasmonicsbased refractive index sensor for detection of hemoglobin concentration”, IEEE Sensors Journal, vol. 18, no. 11, pp. 4372–4377, 2018. [23] S. K. Chamoli, S. Singh, and C. Guo, “Design of extremely sensitive refractive index sensors in infrared for blood glucose detection”, IEEE Sensors Journal, 2020. [24] M. A. Jabin, K. Ahmed, M. J. Rana, B. K. Paul, M. Islam, D. Vigneswaran, and M. S. Uddin, “Surface plasmon resonance based titanium coated biosensor for cancer cell detection”, IEEE Photonics Journal, vol. 11, no. 4, pp. 1–10, 2019. [25] K. Ahmed, F. Ahmed, S. Roy, B. K. Paul, M. N. Aktar, D. Vigneswaran, and M. S. Islam, “Refractive index-based blood components sensing in terahertz spectrum”, IEEE Sensors Journal, vol. 19, no. 9, pp. 3368–3375, 2019. [26] S.-Y. Tseng, S.-Y. Li, S.-Y. Yi, A. Y. Sun, D.-Y. Gao, and D.Wan, “Food quality monitor: Paper-based plasmonic sensors prepared through reversal nanoimprinting for rapid detection of biogenic amine odorants”, ACS applied materials & interfaces, vol. 9, no. 20, pp. 17 306–17 316, 2017. [27] M. J. Al Mahmod, R. Hyder, and M. Z. Islam, “A highly sensitive metal– insulator–metal ring resonator-based nanophotonic structure for biosensing applications”, IEEE Sensors Journal, vol. 18, no. 16, pp. 6563–6568, 2018. [28] D. N. Batchelder and J. P. Willson, Optical surface plasmon sensor device, US Patent 4,844,613, 1989. [29] R. Garabedian, C. Gonzalez, J. Richards, A. Knoesen, R. Spencer, S. Collins, and R. Smith, “Microfabricated surface plasmon sensing system”, Sensors and Actuators A: Physical, vol. 43, no. 1-3, pp. 202–207, 1994. [30] S. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonace sensor based on phase detection”, Sensors and actuators B: Chemical, vol. 35, no. 1-3, pp. 187–191, 1996. [31] J. Homola, J. Cˇ tyroky˘, M. Skalsky˘, J. Hradilova, and P. Kolárˇová, “A surface plasmon resonance based integrated optical sensor”, Sensors and Actuators B: Chemical, vol. 39, no. 1-3, pp. 286–290, 1997. [32] M. Naya and T. Akimoto, Surface plasmon sensor, US Patent 5,917,608, 1999. [33] J. Cˇ tyroky˘, J. Homola, P. Lambeck, S. Musa, H. Hoekstra, R. Harris, J. Wilkinson, B. Usievich, and N. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance”, Sensors and Actuators B: Chemical, vol. 54, no. 1-2, pp. 66–73, 1999. 83 [34] J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles”, Nano letters, vol. 3, no. 4, pp. 485–491, 2003. [35] E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of nir localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors”, Nano letters, vol. 7, no. 5, pp. 1256–1263, 2007. [36] A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films”, Langmuir, vol. 20, no. 12, pp. 4813–4815, 2004. [37] A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors”, Applied Physics Letters, vol. 90, no. 24, p. 243 110, 2007. [38] X.-P. Jin, X.-G. Huang, J. Tao, X.-S. Lin, and Q. Zhang, “A novel nanometeric plasmonic refractive index sensor”, IEEE transactions on nanotechnology, vol. 9, no. 2, pp. 134–137, 2010. [39] J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing”, Plasmonics, vol. 5, no. 2, pp. 161–167, 2010. [40] S.-H. Kwon, “Deep subwavelength-scale metal–insulator–metal plasmonic disk cavities for refractive index sensors”, IEEE Photonics Journal, vol. 5, no. 1, pp. 4 800 107–4 800 107, 2013. [41] L. Xu, S. Wang, and L. Wu, “Refractive index sensing based on plasmonic waveguide side coupled with bilaterally located double cavities”, IEEE Transactions on Nanotechnology, vol. 13, no. 5, pp. 875–880, 2014. [42] M. Bahramipanah, M. S. Abrishamian, S. A. Mirtaheri, and J.-M. Liu, “Ultracompact plasmonic loop–stub notch filter and sensor”, Sensors and Actuators B: Chemical, vol. 194, pp. 311–318, 2014. [43] B. Ni, X. Chen, D. Xiong, H. Liu, G. Hua, J. Chang, J. Zhang, and H. Zhou, “Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems”, Optical and Quantum Electronics, vol. 47, no. 6, pp. 1339–1346, 2015. [44] Y.-Y. Xie, Y.-X. Huang, W.-L. Zhao, W.-H. Xu, and C. He, “A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity”, IEEE Photonics Journal, vol. 7, no. 2, pp. 1–12, 2015. 84 [45] S.-B. Yan, L. Luo, C.-Y. Xue, and Z.-D. Zhang, “A refractive index sensor based on a metal-insulator-metal waveguide-coupled ring resonator”, Sensors, vol. 15, no. 11, pp. 29 183–29 191, 2015. [46] R. Zafar and M. Salim, “Enhanced figure of merit in fano resonance-based plasmonic refractive index sensor”, IEEE Sensors Journal, vol. 15, no. 11, pp. 6313– 6317, 2015. [47] S. Zou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator: A review”, IEEE Sensors Journal, vol. 15, no. 2, pp. 646–650, 2014. [48] Z. Chen, L. Yu, L. Wang, G. Duan, Y. Zhao, and J. Xiao, “A refractive index nanosensor based on fano resonance in the plasmonic waveguide system”, IEEE Photonics Technology Letters, vol. 27, no. 16, pp. 1695–1698, 2015. [49] L. Chen, Y. Liu, Z. Yu, D.Wu, R. Ma, Y. Zhang, and H. Ye, “Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity”, Optics express, vol. 24, no. 9, pp. 9975–9983, 2016. [50] F. Chen and D. Yao, “Realizing of plasmon fano resonance with a metal nanowall moving along mim waveguide”, Optics Communications, vol. 369, pp. 72–78, 2016. [51] M. R. Rakhshani and M. A. Mansouri-Birjandi, “High-sensitivity plasmonic sensor based on metal–insulator–metal waveguide and hexagonal-ring cavity”, IEEE Sensors Journal, vol. 16, no. 9, pp. 3041–3046, 2016. [52] T. Wu and W. Cao, “A multifunction filter based on plasmonic waveguide with double-nanodisk-shaped resonators”, Optik, vol. 127, no. 20, pp. 8976–8982, 2016. [53] Z. Zhang, L. Luo, C. Xue, W. Zhang, and S. Yan, “Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors”, Sensors, vol. 16, no. 5, p. 642, 2016. [54] X. Zhang, M. Shao, and X. Zeng, “High quality plasmonic sensors based on fano resonances created through cascading double asymmetric cavities”, Sensors, vol. 16, no. 10, p. 1730, 2016. [55] A. Akhavan, H. Ghafoorifard, S. Abdolhosseini, and H. Habibiyan, “Plasmoninduced transparency based on a triangle cavity coupled with an ellipse-ring resonator”, Applied optics, vol. 56, no. 34, pp. 9556–9563, 2017. 85 [56] M. R. Rakhshani and M. A. Mansouri-Birjandi, “Utilizing the metallic nanorods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application”, Plasmonics, vol. 12, no. 4, pp. 999– 1006, 2017. [57] Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators”, Sensors, vol. 17, no. 4, p. 784, 2017. [58] J. Zhou, H. Chen, Z. Zhang, J. Tang, J. Cui, C. Xue, and S. Yan, “Transmission and refractive index sensing based on fano resonance in mim waveguidecoupled trapezoid cavity”, AIP Advances, vol. 7, no. 1, p. 015 020, 2017. [59] C. Wu, H. Ding, T. Huang, X. Wu, B. Chen, K. Ren, and S. Fu, “Plasmoninduced transparency and refractive index sensing in side-coupled stub-hexagon resonators”, Plasmonics, vol. 13, no. 1, pp. 251–257, 2018. [60] A. Akhavan, H. Ghafoorifard, S. Abdolhosseini, and H. Habibiyan, “Metal– insulator–metal waveguide-coupled asymmetric resonators for sensing and slow light applications”, IET Optoelectronics, vol. 12, no. 5, pp. 220–227, 2018. [61] S. Ghorbani, M. A. Dashti, and M. Jabbari, “Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring”, Laser Physics, vol. 28, no. 6, p. 066 208, 2018. [62] M. R. Rakhshani and M. A. Mansouri-Birjandi, “Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection”, IEEE Transactions on Nanotechnology, vol. 17, no. 3, pp. 475– 481, 2018. [63] X. Yi, J. Tian, and R. Yang, “Tunable fano resonance in plasmonic mdm waveguide with a square type split-ring resonator”, Optik, vol. 171, pp. 139–148, 2018. [64] Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator”, Sensors, vol. 18, no. 1, p. 116, 2018. [65] M. Butt, S. Khonina, and N. Kazanskiy, “Hybrid plasmonic waveguide-assisted metal–insulator–metal ring resonator for refractive index sensing”, Journal of Modern Optics, vol. 65, no. 9, pp. 1135–1140, 2018. [66] Z. Li, K. Wen, L. Chen, L. Lei, J. Zhou, D. Zhou, Y. Fang, and B. Wu, “Control of multiple fano resonances based on a subwavelength mim coupled cavities system”, IEEE Access, vol. 7, pp. 59 369–59 375, 2019. 86 [67] X. Yang, E. Hua, M. Wang, Y. Wang, F. Wen, and S. Yan, “Fano resonance in a mim waveguide with two triangle stubs coupled with a split-ring nanocavity for sensing application”, Sensors, vol. 19, no. 22, p. 4972, 2019. [68] M. Butt, S. Khonina, and N. Kazanskiy, “A plasmonic colour filter and refractive index sensor applications based on metal–insulator–metal square -ring cavities”, Laser Physics, vol. 30, no. 1, p. 016 205, 2019. [69] Y. Zhang and M. Cui, “Refractive index sensor based on the symmetric mim waveguide structure”, Journal of Electronic Materials, vol. 48, no. 2, pp. 1005– 1010, 2019. [70] M. Butt, S. Khonina, and N. Kazanskiy, “Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity”, Journal of Modern Optics, vol. 66, no. 9, pp. 1038–1043, 2019. [71] Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R.Wang, J. Cui, Y. Hou, andW. Liu, “High-sensitivity refractive index sensors based on fano resonance in the plasmonic system of splitting ring cavity-coupled mim waveguide with tooth cavity”, Applied Physics A, vol. 125, no. 1, p. 13, 2019. [72] M. R. Rakhshani, “Optical refractive index sensor with two plasmonic doublesquare resonators for simultaneous sensing of human blood groups”, Photonics and Nanostructures-Fundamentals and Applications, vol. 39, p. 100 768, 2020. [73] M. Bazgir, M. Jalalpour, F. B. Zarrabi, and A. S. Arezoomand, “Design of an optical switch and sensor based on a mim coupled waveguide using a dna composite”, Journal of Electronic Materials, pp. 1–6, 2020. [74] W. Lai, K.Wen, J. Lin, Z. Guo, Q. Hu, and Y. Fang, “Plasmonic filter and sensor based on a subwavelength end-coupled hexagonal resonator”, Applied optics, vol. 57, no. 22, pp. 6369–6374, 2018. [75] S. Khani, M. Danaie, and P. Rezaei, “Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled u-shaped cavities”, IET Optoelectronics, 2019. [76] W. Wei, X. Zhang, and X. Ren, “Plasmonic circular resonators for refractive index sensors and filters”, Nanoscale research letters, vol. 10, no. 1, pp. 1–6, 2015. [77] C. Li, S. Li, Y. Wang, R. Jiao, L. Wang, and L. Yu, “Multiple fano resonances based on plasmonic resonator system with end-coupled cavities for high-performance nanosensor”, IEEE Photonics Journal, vol. 9, no. 6, pp. 1–9, 2017. 87 [78] A. D. Raki´c, A. B. Djuriši´c, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices”, Applied optics, vol. 37, no. 22, pp. 5271–5283, 1998. [79] C. S. Desai and J. F. Abel, Introduction to the finite element method; a numerical method for engineering analysis. Van Nostrand Reinhold, 1971. [80] N. S. Matthew, Numerical techniques in electromagnetics. CRC Press, 2000. [81] O. Andersen, “Laplacian electrostatic field calculations by finite elements with automatic grid generation”, IEEE Transactions on Power Apparatus and Systems, no. 5, pp. 1485–1492, 1973. [82] D. G. Rabus, Integrated ring resonators. Springer, 2007. [83] E. J. R. Vesseur, R. DeWaele, H. Lezec, H. Atwater, F. J. Garcı˘a de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal au nanoresonator fabricated using focused-ion-beam milling”, Applied Physics Letters, vol. 92, no. 8, p. 083 110, 2008. [84] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators”, Nature, vol. 440, no. 7083, pp. 508–511, 2006. [85] H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Twodimensional optics with surface plasmon polaritons”, Applied Physics Letters, vol. 81, no. 10, pp. 1762–1764, 2002. [86] P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials”, Science, vol. 325, no. 5940, pp. 594– 597, 2009. 88 |
en_US |